BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17564427)

  • 1. A systematic MS-based approach for identifying in vitro substrates of PKA and PKG in rat uteri.
    Huang SY; Tsai ML; Chen GY; Wu CJ; Chen SH
    J Proteome Res; 2007 Jul; 6(7):2674-84. PubMed ID: 17564427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC.
    Huang SY; Tsai ML; Wu CJ; Hsu JL; Ho SH; Chen SH
    Proteomics; 2006 Mar; 6(6):1722-34. PubMed ID: 16470654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.
    Wu CJ; Chen YW; Tai JH; Chen SH
    J Proteome Res; 2011 Mar; 10(3):1088-97. PubMed ID: 21210654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain.
    Alverdi V; Mazon H; Versluis C; Hemrika W; Esposito G; van den Heuvel R; Scholten A; Heck AJ
    J Mol Biol; 2008 Feb; 375(5):1380-93. PubMed ID: 18082764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of Rho-associated kinase (Rho-kinase/ROCK/ROK) substrates by protein kinases A and C.
    Kang JH; Jiang Y; Toita R; Oishi J; Kawamura K; Han A; Mori T; Niidome T; Ishida M; Tatematsu K; Tanizawa K; Katayama Y
    Biochimie; 2007 Jan; 89(1):39-47. PubMed ID: 16996192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.
    Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC
    J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs.
    Krüger M; Kötter S; Grützner A; Lang P; Andresen C; Redfield MM; Butt E; dos Remedios CG; Linke WA
    Circ Res; 2009 Jan; 104(1):87-94. PubMed ID: 19023132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-angular mass spectrometric view at cyclic nucleotide dependent protein kinases: in vivo characterization and structure/function relationships.
    Scholten A; Aye TT; Heck AJ
    Mass Spectrom Rev; 2008; 27(4):331-53. PubMed ID: 18381623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1.
    Hennrich ML; Marino F; Groenewold V; Kops GJ; Mohammed S; Heck AJ
    J Proteome Res; 2013 May; 12(5):2214-24. PubMed ID: 23510141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo.
    Lemeer S; Pinkse MW; Mohammed S; van Breukelen B; den Hertog J; Slijper M; Heck AJ
    J Proteome Res; 2008 Apr; 7(4):1555-64. PubMed ID: 18307296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of mouse LASP-1 on threonine 156 by cAMP- and cGMP-dependent protein kinase.
    Keicher C; Gambaryan S; Schulze E; Marcus K; Meyer HE; Butt E
    Biochem Biophys Res Commun; 2004 Nov; 324(1):308-16. PubMed ID: 15465019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of protein kinases A and G by hydralazine but not KRN2391 in vitro.
    Sun G; Robinson PJ
    Zhongguo Yao Li Xue Bao; 1995 May; 16(3):276-80. PubMed ID: 7660828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of PKA and PKG signaling nodes by chemical proteomics.
    Corradini E; Heck AJ; Scholten A
    Methods Mol Biol; 2015; 1294():191-201. PubMed ID: 25783887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC).
    Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A
    J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of cGMP-dependent protein kinase anchoring proteins (GKAPs).
    Vo NK; Gettemy JM; Coghlan VM
    Biochem Biophys Res Commun; 1998 May; 246(3):831-5. PubMed ID: 9618298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of cAMP-dependent protein kinase isoforms and their anchoring proteins in mouse ventricular tissue.
    Scholten A; van Veen TA; Vos MA; Heck AJ
    J Proteome Res; 2007 May; 6(5):1705-17. PubMed ID: 17432891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis and prediction of substrate specificity in protein serine/threonine kinases.
    Brinkworth RI; Breinl RA; Kobe B
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):74-9. PubMed ID: 12502784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of VASP serine 157 phosphorylation in human neutrophils after stimulation by a chemoattractant.
    Eckert RE; Jones SL
    J Leukoc Biol; 2007 Nov; 82(5):1311-21. PubMed ID: 17684042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-plasmon-resonance-based chemical proteomics: efficient specific extraction and semiquantitative identification of cyclic nucleotide-binding proteins from cellular lysates by using a combination of surface plasmon resonance, sequential elution and liquid chromatography-tandem mass spectrometry.
    Visser NF; Scholten A; van den Heuvel RH; Heck AJ
    Chembiochem; 2007 Feb; 8(3):298-305. PubMed ID: 17206730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide prediction of PKA phosphorylation sites in eukaryotic kingdom.
    Gao X; Jin C; Ren J; Yao X; Xue Y
    Genomics; 2008 Dec; 92(6):457-63. PubMed ID: 18817865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.