These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
649 related articles for article (PubMed ID: 17564609)
1. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609 [TBL] [Abstract][Full Text] [Related]
2. Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Diaby N; Dold B; Pfeifer HR; Holliger C; Johnson DB; Hallberg KB Environ Microbiol; 2007 Feb; 9(2):298-307. PubMed ID: 17222129 [TBL] [Abstract][Full Text] [Related]
3. Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. López-Archilla AI; Gérard E; Moreira D; López-García P FEMS Microbiol Lett; 2004 Jun; 235(2):221-8. PubMed ID: 15183867 [TBL] [Abstract][Full Text] [Related]
4. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Kimura S; Bryan CG; Hallberg KB; Johnson DB Environ Microbiol; 2011 Aug; 13(8):2092-104. PubMed ID: 21382147 [TBL] [Abstract][Full Text] [Related]
5. Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities. Hallberg KB; Coupland K; Kimura S; Johnson DB Appl Environ Microbiol; 2006 Mar; 72(3):2022-30. PubMed ID: 16517651 [TBL] [Abstract][Full Text] [Related]
6. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483 [TBL] [Abstract][Full Text] [Related]
7. Evolution of microbial "streamer" growths in an acidic, metal-contaminated stream draining an abandoned underground copper mine. Kay CM; Rowe OF; Rocchetti L; Coupland K; Hallberg KB; Johnson DB Life (Basel); 2013 Feb; 3(1):189-210. PubMed ID: 25371339 [TBL] [Abstract][Full Text] [Related]
8. The microbiology of acidic mine waters. Johnson DB; Hallberg KB Res Microbiol; 2003 Sep; 154(7):466-73. PubMed ID: 14499932 [TBL] [Abstract][Full Text] [Related]
9. Microorganisms in subterranean acidic waters within Europe's deepest metal mine. Kay CM; Haanela A; Johnson DB Res Microbiol; 2014 Nov; 165(9):705-12. PubMed ID: 25063488 [TBL] [Abstract][Full Text] [Related]
10. Microbial populations identified by fluorescence in situ hybridization in a constructed wetland treating acid coal mine drainage. Nicomrat D; Dick WA; Tuovinen OH J Environ Qual; 2006; 35(4):1329-37. PubMed ID: 16825452 [TBL] [Abstract][Full Text] [Related]
11. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site. Tan GL; Shu WS; Zhou WH; Li XL; Lan CY; Huang LN FEMS Microbiol Ecol; 2009 Nov; 70(2):121-9. PubMed ID: 19678846 [TBL] [Abstract][Full Text] [Related]
12. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. Xie X; Xiao S; He Z; Liu J; Qiu G J Appl Microbiol; 2007 Oct; 103(4):1227-38. PubMed ID: 17897227 [TBL] [Abstract][Full Text] [Related]
13. New cultivation medium for "Ferrovum" and Gallionella-related strains. Tischler JS; Jwair RJ; Gelhaar N; Drechsel A; Skirl AM; Wiacek C; Janneck E; Schlömann M J Microbiol Methods; 2013 Nov; 95(2):138-44. PubMed ID: 23954479 [TBL] [Abstract][Full Text] [Related]
14. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Golyshina OV; Timmis KN Environ Microbiol; 2005 Sep; 7(9):1277-88. PubMed ID: 16104851 [TBL] [Abstract][Full Text] [Related]
15. A hydrogen-based subsurface microbial community dominated by methanogens. Chapelle FH; O'Neill K; Bradley PM; Methé BA; Ciufo SA; Knobel LL; Lovley DR Nature; 2002 Jan; 415(6869):312-5. PubMed ID: 11797006 [TBL] [Abstract][Full Text] [Related]
16. Microbial diversity of mine water at Zhong Tiaoshan copper mine, China. He Z; Xie X; Xiao S; Liu J; Qiu G J Basic Microbiol; 2007 Dec; 47(6):485-95. PubMed ID: 18072249 [TBL] [Abstract][Full Text] [Related]
17. Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). García-Moyano A; González-Toril E; Aguilera A; Amils R Syst Appl Microbiol; 2007 Dec; 30(8):601-14. PubMed ID: 17950555 [TBL] [Abstract][Full Text] [Related]
18. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Wendt-Potthoff K; Koschorreck M Microb Ecol; 2002 Jan; 43(1):92-106. PubMed ID: 11984632 [TBL] [Abstract][Full Text] [Related]
19. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. Falagán C; Sánchez-España J; Johnson DB FEMS Microbiol Ecol; 2014 Jan; 87(1):231-43. PubMed ID: 24102574 [TBL] [Abstract][Full Text] [Related]
20. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Johnson DB; Rolfe S; Hallberg KB; Iversen E Environ Microbiol; 2001 Oct; 3(10):630-7. PubMed ID: 11722543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]