BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 17564840)

  • 1. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer particle-based micromolding to fabricate novel microstructures.
    Park JH; Choi SO; Kamath R; Yoon YK; Allen MG; Prausnitz MR
    Biomed Microdevices; 2007 Apr; 9(2):223-34. PubMed ID: 17195110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps.
    Agirregabiria M; Blanco FJ; Berganzo J; Arroyo MT; Fullaondo A; Mayora K; Ruano-López JM
    Lab Chip; 2005 May; 5(5):545-52. PubMed ID: 15856093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique.
    Metz S; Jiguet S; Bertsch A; Renaud P
    Lab Chip; 2004 Apr; 4(2):114-20. PubMed ID: 15052350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of hydrogel microstructures using polymerization controlled by microcontact printing (PCmicroCP).
    Biswal D; Chirra HD; Hilt JZ
    Biomed Microdevices; 2008 Apr; 10(2):213-9. PubMed ID: 17876708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From MEMS to NEMS with carbon.
    Wang C; Madou M
    Biosens Bioelectron; 2005 Apr; 20(10):2181-7. PubMed ID: 15741096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures.
    Faid K; Voicu R; Bani-Yaghoub M; Tremblay R; Mealing G; Py C; Barjovanu R
    Biomed Microdevices; 2005 Sep; 7(3):179-84. PubMed ID: 16133804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls.
    Zhou WX; Chan-Park MB
    Lab Chip; 2005 May; 5(5):512-8. PubMed ID: 15856087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile approach to patterned binary polymer brush through photolithography and surface-initiated photopolymerization.
    Jia X; Jiang X; Liu R; Yin J
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1200-5. PubMed ID: 20361774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase separation micromolding: a new generic approach for microstructuring various materials.
    Vogelaar L; Lammertink RG; Barsema JN; Nijdam W; Bolhuis-Versteeg LA; van Rijn CJ; Wessling M
    Small; 2005 Jun; 1(6):645-55. PubMed ID: 17193501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.