BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17564908)

  • 1. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
    Bellum S; Bawa B; Thuett KA; Stoica G; Abbott LC
    Int J Toxicol; 2007; 26(3):261-9. PubMed ID: 17564908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway.
    Limke TL; Bearss JJ; Atchison WD
    Toxicol Sci; 2004 Jul; 80(1):60-8. PubMed ID: 15141107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells.
    Limke TL; Atchison WD
    Toxicol Appl Pharmacol; 2002 Jan; 178(1):52-61. PubMed ID: 11781080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice.
    Bellum S; Thuett KA; Bawa B; Abbott LC
    J Appl Toxicol; 2013 Sep; 33(9):959-69. PubMed ID: 22886740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination deficits induced in young adult mice treated with methylmercury.
    Bellum S; Thuett KA; Grajeda R; Abbott LC
    Int J Toxicol; 2007; 26(2):115-21. PubMed ID: 17454251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for interactions between intracellular calcium stores during methylmercury-induced intracellular calcium dysregulation in rat cerebellar granule neurons.
    Limke TL; Otero-Montañez JK; Atchison WD
    J Pharmacol Exp Ther; 2003 Mar; 304(3):949-58. PubMed ID: 12604669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of immature neurons in culture to metal-induced changes in reactive oxygen species and intracellular free calcium.
    Mundy WR; Freudenrich TM
    Neurotoxicology; 2000 Dec; 21(6):1135-44. PubMed ID: 11233760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous exposure to low concentrations of methylmercury impairs cerebellar granule cell migration in organotypic slice culture.
    Mancini JD; Autio DM; Atchison WD
    Neurotoxicology; 2009 Mar; 30(2):203-8. PubMed ID: 19152806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P; Aschner M; Syversen T
    Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylmercury antagonizes the survival-promoting activity of insulin-like growth factor on developing cerebellar granule neurons.
    Bulleit RF; Cui H
    Toxicol Appl Pharmacol; 1998 Dec; 153(2):161-8. PubMed ID: 9878587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible involvement of cathepsin B released by microglia in methylmercury-induced cerebellar pathological changes in the adult rat.
    Sakamoto M; Miyamoto K; Wu Z; Nakanishi H
    Neurosci Lett; 2008 Sep; 442(3):292-6. PubMed ID: 18638529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protection of cerebellar granule cells by tocopherols and tocotrienols against methylmercury toxicity.
    Shichiri M; Takanezawa Y; Uchida K; Tamai H; Arai H
    Brain Res; 2007 Nov; 1182():106-15. PubMed ID: 17949699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vitro effects of selenomethionine on methylmercury-induced neurotoxicity.
    Kaur P; Evje L; Aschner M; Syversen T
    Toxicol In Vitro; 2009 Apr; 23(3):378-85. PubMed ID: 19168124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell viability and proteomic analysis in cultured neurons exposed to methylmercury.
    Vendrell I; Carrascal M; Vilaró MT; Abián J; Rodríguez-Farré E; Suñol C
    Hum Exp Toxicol; 2007 Apr; 26(4):263-72. PubMed ID: 17615107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C; Duckworth J; Hermanson O; Ceccatelli S
    J Neurochem; 2006 Apr; 97(1):69-78. PubMed ID: 16524380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells. A proteomic study.
    Vendrell I; Carrascal M; Campos F; Abián J; Suñol C
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):109-18. PubMed ID: 19800906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polychlorinated biphenyls and methylmercury alter intracellular calcium concentrations in rat cerebellar granule cells.
    Bemis JC; Seegal RF
    Neurotoxicology; 2000 Dec; 21(6):1123-34. PubMed ID: 11233759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells.
    Kim BM; Choi YJ; Han Y; Yun YS; Hong SH
    Toxicol Appl Pharmacol; 2009 Aug; 239(1):87-97. PubMed ID: 19481559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.
    Roda E; Coccini T; Acerbi D; Castoldi A; Bernocchi G; Manzo L
    J Chem Neuroanat; 2008 May; 35(3):285-94. PubMed ID: 18358697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.