These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

651 related articles for article (PubMed ID: 17565531)

  • 1. Nerve conduits and growth factor delivery in peripheral nerve repair.
    Pfister LA; Papaloïzos M; Merkle HP; Gander B
    J Peripher Nerv Syst; 2007 Jun; 12(2):65-82. PubMed ID: 17565531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth factor delivery systems and repair strategies for damaged peripheral nerves.
    Madduri S; Gander B
    J Control Release; 2012 Jul; 161(2):274-82. PubMed ID: 22178593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor.
    Kokai LE; Ghaznavi AM; Marra KG
    Biomaterials; 2010 Mar; 31(8):2313-22. PubMed ID: 19969346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration.
    Madduri S; Gander B
    J Peripher Nerv Syst; 2010 Jun; 15(2):93-103. PubMed ID: 20626772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration.
    Madduri S; Papaloïzos M; Gander B
    Biomaterials; 2010 Mar; 31(8):2323-34. PubMed ID: 20004018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FK506 enhances regeneration of axons across long peripheral nerve gaps repaired with collagen guides seeded with allogeneic Schwann cells.
    Udina E; Rodríguez FJ; Verdú E; Espejo M; Gold BG; Navarro X
    Glia; 2004 Aug; 47(2):120-9. PubMed ID: 15185391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of low-intensity ultrasound on peripheral nerve regeneration in poly(DL-lactic acid-co-glycolic acid) conduits seeded with Schwann cells.
    Chang CJ; Hsu SH
    Ultrasound Med Biol; 2004 Aug; 30(8):1079-84. PubMed ID: 15474752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of nerve conduits in peripheral nerve repair.
    Strauch B
    Hand Clin; 2000 Feb; 16(1):123-30. PubMed ID: 10696581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides.
    Johnson EO; Soucacos PN
    Injury; 2008 Sep; 39 Suppl 3():S30-6. PubMed ID: 18722612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in artificial nerve conduit design: strategies for the delivery of luminal fillers.
    Pabari A; Yang SY; Mosahebi A; Seifalian AM
    J Control Release; 2011 Nov; 156(1):2-10. PubMed ID: 21763371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit.
    Kim SM; Lee SK; Lee JH
    J Craniofac Surg; 2007 May; 18(3):475-88. PubMed ID: 17538306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen nerve conduits--assessment of biocompatibility and axonal regeneration.
    Stang F; Fansa H; Wolf G; Keilhoff G
    Biomed Mater Eng; 2005; 15(1-2):3-12. PubMed ID: 15623925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of electrospun poly(ε-caprolactone) fibers with the extracellular matrix-derived peptide GRGDS improves guidance of schwann cell migration and axonal growth.
    Bockelmann J; Klinkhammer K; von Holst A; Seiler N; Faissner A; Brook GA; Klee D; Mey J
    Tissue Eng Part A; 2011 Feb; 17(3-4):475-86. PubMed ID: 20819000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Tissue engineering of peripheral nerves].
    Sinis N; Schaller HE; Schulte-Eversum C; Schlosshauer B; Doser M; Dietz K; Rösner H; Müller HW; Haerle M
    Handchir Mikrochir Plast Chir; 2006 Dec; 38(6):378-89. PubMed ID: 17219321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of tubes in peripheral nerve repair.
    Dahlin LB; Lundborg G
    Neurosurg Clin N Am; 2001 Apr; 12(2):341-52. PubMed ID: 11525212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of stem cells to augment nerve injury repair.
    Walsh S; Midha R
    Neurosurgery; 2009 Oct; 65(4 Suppl):A80-6. PubMed ID: 19927083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration.
    Gu X; Ding F; Yang Y; Liu J
    Prog Neurobiol; 2011 Feb; 93(2):204-30. PubMed ID: 21130136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair.
    Liu BS
    J Biomed Mater Res A; 2008 Dec; 87(4):1092-102. PubMed ID: 18428983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New artificial nerve conduits made with photocrosslinked hyaluronic acid for peripheral nerve regeneration.
    Sakai Y; Matsuyama Y; Takahashi K; Sato T; Hattori T; Nakashima S; Ishiguro N
    Biomed Mater Eng; 2007; 17(3):191-7. PubMed ID: 17502696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.