BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1756621)

  • 1. Regional differences in content of small basic peptide toxins in the venoms of Crotalus adamanteus and Crotalus horridus.
    Straight RC; Glenn JL; Wolt TB; Wolfe MC
    Comp Biochem Physiol B; 1991; 100(1):51-8. PubMed ID: 1756621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative enzymatic study of HPLC-fractionated Crotalus venoms.
    Soto JG; Perez JC; Lopez MM; Martinez M; Quintanilla-Hernandez TB; Santa-Hernandez MS; Turner K; Glenn JL; Straight RC; Minton SA
    Comp Biochem Physiol B; 1989; 93(4):847-55. PubMed ID: 2680253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Venom characteristics as an indicator of hybridization between Crotalus viridis viridis and Crotalus scutulatus scutulatus in New Mexico.
    Glenn JL; Straight RC
    Toxicon; 1990; 28(7):857-62. PubMed ID: 2120798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distribution among ophidian venoms of a toxin isolated from the venom of the Mojave rattlesnake (Crotalus scutulatus scutulatus).
    Weinstein SA; Minton SA; Wilde CE
    Toxicon; 1985; 23(5):825-44. PubMed ID: 3937297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of myotoxin alpha-like proteins in various snake venoms.
    Bober MA; Glenn JL; Straight RC; Ownby CL
    Toxicon; 1988; 26(7):665-73. PubMed ID: 3140426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the immunogenicity and antigenic composition of several venoms of snakes in the family Crotalidae.
    Ownby CL; Colberg TR
    Toxicon; 1990; 28(2):189-99. PubMed ID: 2339435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibodies to Mojave toxin and use for isolation of cross-reacting proteins in Crotalus venoms.
    Rael ED; Salo RJ; Zepeda H
    Toxicon; 1986; 24(7):661-8. PubMed ID: 3535169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus).
    Rael ED; Lieb CS; Maddux N; Varela-Ramirez A; Perez J
    Comp Biochem Physiol B; 1993 Nov; 106(3):595-600. PubMed ID: 8281754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-reactivity and neutralization by rabbit antisera raised against crotoxin, its subunits and two related toxins.
    Kaiser II; Middlebrook JL; Crumrine MH; Stevenson WW
    Toxicon; 1986; 24(7):669-78. PubMed ID: 3095955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.
    Rokyta DR; Wray KP; Margres MJ
    BMC Genomics; 2013 Jun; 14():394. PubMed ID: 23758969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hypotensive activity of Crotalus atrox (western diamondback rattlesnake) venom: identification of its origin.
    de Mesquita LC; Selistre HS; Giglio JR
    Am J Trop Med Hyg; 1991 Mar; 44(3):345-53. PubMed ID: 2035756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antigenic relationships of fractionated western diamondback rattlesnake (Crotalus atrox) hemorrhagic toxins and other rattlesnake venoms as indicated by monoclonal antibodies.
    Martinez RA; Huang SY; Perez JC
    Toxicon; 1989; 27(2):239-45. PubMed ID: 2718192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intergradation of two different venom populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona.
    Glenn JL; Straight RC
    Toxicon; 1989; 27(4):411-8. PubMed ID: 2499081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies on three rattlesnake toxins.
    Aird SD; Kaiser II
    Toxicon; 1985; 23(3):361-74. PubMed ID: 4024144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of two phospholipases A2 from Mojave rattlesnake (Crotalus scutulatus scutulatus) venom and variation of immunologically related venom proteins in different populations.
    Zepeda H; Rael ED; Knight RA
    Comp Biochem Physiol B; 1985; 81(2):319-24. PubMed ID: 3926375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-linked immunosorbant assay (ELISA) of size-selected crotalid venom antigens by Wyeth's polyvalent antivenom.
    Schaeffer RC; Randall H; Resk J; Carlson RW
    Toxicon; 1988; 26(1):67-76. PubMed ID: 3347932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus).
    Samejima Y; Aoki Y; Mebs D
    Toxicon; 1991; 29(4-5):461-8. PubMed ID: 1862521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibrinolytic and fibrinogen clotting enzymes present in the venoms of western diamondback rattlesnake, Crotalus atrox, eastern diamondback rattlesnake, Crotalus adamanteus, and southern Pacific rattlesnake, Crotalus viridis helleri.
    Bajwa SS; Markland FS; Russell FE
    Toxicon; 1981; 19(1):53-9. PubMed ID: 7222089
    [No Abstract]   [Full Text] [Related]  

  • 20. Mojave toxin in venom of Crotalus helleri (Southern Pacific Rattlesnake): molecular and geographic characterization.
    French WJ; Hayes WK; Bush SP; Cardwell MD; Bader JO; Rael ED
    Toxicon; 2004 Dec; 44(7):781-91. PubMed ID: 15500854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.