BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17566582)

  • 1. An economical and highly productive cell-free protein synthesis system utilizing fructose-1,6-bisphosphate as an energy source.
    Kim TW; Keum JW; Oh IS; Choi CY; Kim HC; Kim DM
    J Biotechnol; 2007 Jul; 130(4):389-93. PubMed ID: 17566582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous cell-free protein synthesis using glycolytic intermediates as energy sources.
    Kim HC; Kim TW; Park CG; Oh IS; Park K; Kim DM
    J Microbiol Biotechnol; 2008 May; 18(5):885-8. PubMed ID: 18633286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energizing cell-free protein synthesis with glucose metabolism.
    Calhoun KA; Swartz JR
    Biotechnol Bioeng; 2005 Jun; 90(5):606-13. PubMed ID: 15830344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate replenishment extends protein synthesis with an in vitro translation system designed to mimic the cytoplasm.
    Jewett MC; Swartz JR
    Biotechnol Bioeng; 2004 Aug; 87(4):465-72. PubMed ID: 15286983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged cell-free protein synthesis using dual energy sources: Combined use of creatine phosphate and glucose for the efficient supply of ATP and retarded accumulation of phosphate.
    Kim TW; Oh IS; Keum JW; Kwon YC; Byun JY; Lee KH; Choi CY; Kim DM
    Biotechnol Bioeng; 2007 Aug; 97(6):1510-5. PubMed ID: 17238210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis.
    Jewett MC; Swartz JR
    Biotechnol Bioeng; 2004 Apr; 86(1):19-26. PubMed ID: 15007837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total amino acid stabilization during cell-free protein synthesis reactions.
    Calhoun KA; Swartz JR
    J Biotechnol; 2006 May; 123(2):193-203. PubMed ID: 16442654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonging cell-free protein synthesis by selective reagent additions.
    Kim DM; Swartz JR
    Biotechnol Prog; 2000; 16(3):385-90. PubMed ID: 10835240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures.
    Lara AR; Caspeta L; Gosset G; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2008 Mar; 99(4):893-901. PubMed ID: 17929322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis.
    Liu DV; Zawada JF; Swartz JR
    Biotechnol Prog; 2005; 21(2):460-5. PubMed ID: 15801786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and scalable method for scaling up cell free protein synthesis in batch mode.
    Voloshin AM; Swartz JR
    Biotechnol Bioeng; 2005 Aug; 91(4):516-21. PubMed ID: 15937883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting protein refolding yields in a fed-batch and batch-refolding system.
    Mannall GJ; Titchener-Hooker NJ; Dalby PA
    Biotechnol Bioeng; 2007 Aug; 97(6):1523-34. PubMed ID: 17304557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system.
    Kim TW; Keum JW; Oh IS; Choi CY; Park CG; Kim DM
    J Biotechnol; 2006 Dec; 126(4):554-61. PubMed ID: 16797767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An economical method for cell-free protein synthesis using glucose and nucleoside monophosphates.
    Calhoun KA; Swartz JR
    Biotechnol Prog; 2005; 21(4):1146-53. PubMed ID: 16080695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple inhibitory factor removal from an Escherichia coli cell extract improves cell-free protein synthesis.
    Seki E; Matsuda N; Kigawa T
    J Biosci Bioeng; 2009 Jul; 108(1):30-5. PubMed ID: 19577188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free protein synthesis system prepared from insect cells by freeze-thawing.
    Ezure T; Suzuki T; Higashide S; Shintani E; Endo K; Kobayashi S; Shikata M; Ito M; Tanimizu K; Nishimura O
    Biotechnol Prog; 2006; 22(6):1570-7. PubMed ID: 17137303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactose-induced production of human soluble B lymphocyte stimulator (hsBLyS) in E. coli with different culture strategies.
    Li Z; Zhang X; Tan T
    Biotechnol Lett; 2006 Apr; 28(7):477-83. PubMed ID: 16614929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of growth rate on cell extract performance in cell-free protein synthesis.
    Zawada J; Swartz J
    Biotechnol Bioeng; 2006 Jul; 94(4):618-24. PubMed ID: 16673418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli.
    Kim DM; Swartz JR
    Biotechnol Bioeng; 2004 Jan; 85(2):122-9. PubMed ID: 14704994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures.
    Nikel PI; Pettinari MJ; Galvagno MA; Méndez BS
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1337-43. PubMed ID: 18034236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.