These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 17566727)
1. A rotational drum fermentation system with water flushing for enhancing hydrolysis and acidification of solid organic wastes. Gan J; Chen L; Li B; Jiang W; Kitamura Y Bioresour Technol; 2008 May; 99(7):2571-7. PubMed ID: 17566727 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of hydrolysis and acidification of solid organic waste by a rotational drum fermentation system with methanogenic leachate recirculation. Chen L; Jiang WZ; Kitamura Y; Li B Bioresour Technol; 2007 Aug; 98(11):2194-200. PubMed ID: 17055260 [TBL] [Abstract][Full Text] [Related]
3. Ultrasound-assisted hydrolysis and acidogenesis of solid organic wastes in a rotational drum fermentation system. Chen L; Li B; Li D; Gan J; Jiang W; Kitamura Y Bioresour Technol; 2008 Nov; 99(17):8337-43. PubMed ID: 18406605 [TBL] [Abstract][Full Text] [Related]
4. Using porphyritic andesite as a new additive for improving hydrolysis and acidogenesis of solid organic wastes. Li D; Zhou T; Chen L; Jiang W; Cheng F; Li B; Kitamura Y Bioresour Technol; 2009 Dec; 100(23):5594-9. PubMed ID: 19560914 [TBL] [Abstract][Full Text] [Related]
5. Improving acidogenic performance in anaerobic degradation of solid organic waste using a rotational drum fermentation system. Jiang WZ; Kitamura Y; Li B Bioresour Technol; 2005 Sep; 96(14):1537-43. PubMed ID: 15978985 [TBL] [Abstract][Full Text] [Related]
6. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes. Cheng F; Li M; Li D; Chen L; Jiang W; Kitamura Y; Li B Bioresour Technol; 2010 Jul; 101(14):5076-83. PubMed ID: 20156676 [TBL] [Abstract][Full Text] [Related]
7. Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Rincón B; Sánchez E; Raposo F; Borja R; Travieso L; Martín MA; Martín A Waste Manag; 2008; 28(5):870-7. PubMed ID: 17482452 [TBL] [Abstract][Full Text] [Related]
8. Acidogenic fermentation of proteinaceous solid waste and characterization of different bioconversion stages and extracellular products. Ganesh Kumar A; Kamatchi P; Umashankari J; Vidhya S; Sriyutha Murthy P; Sekaran G Biodegradation; 2008 Jul; 19(4):535-43. PubMed ID: 17952609 [TBL] [Abstract][Full Text] [Related]
9. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Xu SY; Karthikeyan OP; Selvam A; Wong JW Bioresour Technol; 2012 Dec; 126():425-30. PubMed ID: 22227144 [TBL] [Abstract][Full Text] [Related]
10. Hydraulic retention time impact of treated recirculated leachate on the hydrolytic kinetic rate of coffee pulp in an acidogenic reactor. Houbron E; González-López GI; Cano-Lozano V; Rustrían E Water Sci Technol; 2008; 58(7):1415-21. PubMed ID: 18957754 [TBL] [Abstract][Full Text] [Related]
11. Mono fermentation of grass silage by means of loop reactors. Koch K; Wichern M; Lübken M; Horn H Bioresour Technol; 2009 Dec; 100(23):5934-40. PubMed ID: 19577462 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step. Rincón B; Borja R; Martín MA; Martín A Waste Manag; 2009 Sep; 29(9):2566-73. PubMed ID: 19450962 [TBL] [Abstract][Full Text] [Related]
13. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH. Zhang P; Chen Y; Zhou Q Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988 [TBL] [Abstract][Full Text] [Related]
14. Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Zhu H; Parker W; Basnar R; Proracki A; Falletta P; Béland M; Seto P Bioresour Technol; 2009 Nov; 100(21):5097-102. PubMed ID: 19576761 [TBL] [Abstract][Full Text] [Related]
15. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Ucisik AS; Henze M Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214 [TBL] [Abstract][Full Text] [Related]
16. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment. Yoshida H; Tokumoto H; Ishii K; Ishii R Bioresour Technol; 2009 Jun; 100(12):2933-9. PubMed ID: 19254834 [TBL] [Abstract][Full Text] [Related]
17. Mesophilic bio-liquefaction of lincomycin manufacturing biowaste: the influence of total solid content and inoculum to substrate ratio. Wu D; Lü F; Gao H; Shao L; He P Bioresour Technol; 2011 May; 102(10):5855-62. PubMed ID: 21376573 [TBL] [Abstract][Full Text] [Related]
18. Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols. Dogan E; Dunaev T; Erguder TH; Demirer GN Chemosphere; 2009 Feb; 74(6):797-803. PubMed ID: 19042007 [TBL] [Abstract][Full Text] [Related]
19. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes. Zhang B; He PJ; Lü F; Shao LM; Wang P Water Res; 2007 Nov; 41(19):4468-78. PubMed ID: 17640698 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of acid hydrolysates from olive-tree pruning debris by Pachysolen tannophilus. Moya AJ; Bravo V; Mateo S; Sánchez S Bioprocess Biosyst Eng; 2008 Oct; 31(6):611-7. PubMed ID: 18347818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]