These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 17566860)

  • 1. A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile.
    Azer K; Peskin CS
    Cardiovasc Eng; 2007 Jun; 7(2):51-73. PubMed ID: 17566860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model.
    Comerford A; Plank MJ; David T
    J Biomech Eng; 2008 Feb; 130(1):011010. PubMed ID: 18298186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anharmonic analysis of arterial blood pressure and flow pulses.
    Voltairas PA; Fotiadis DI; Massalas CV; Michalis LK
    J Biomech; 2005 Jul; 38(7):1423-31. PubMed ID: 15922753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial variations in shear stress in a 3-D bifurcation model at low Reynolds numbers.
    Rouhanizadeh M; Lin TC; Arcas D; Hwang J; Hsiai TK
    Ann Biomed Eng; 2005 Oct; 33(10):1360-74. PubMed ID: 16240085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of the local nonlinear arterial flow theory: influence of the upstream and downstream conditions.
    Bensalah A; Flaud P
    Med Eng Phys; 2008 Nov; 30(9):1159-67. PubMed ID: 18400549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Womersley number-based estimates of blood flow rate in Doppler analysis: in vivo validation by means of phase-contrast MRI.
    Ponzini R; Vergara C; Rizzo G; Veneziani A; Roghi A; Vanzulli A; Parodi O; Redaelli A
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1807-15. PubMed ID: 20659826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation.
    Canić S; Hartley CJ; Rosenstrauch D; Tambaca J; Guidoboni G; Mikelić A
    Ann Biomed Eng; 2006 Apr; 34(4):575-92. PubMed ID: 16550449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and computational investigations of nonlinear wave propagations in arteries. (I)--A theoretical model of nonlinear pulse wave propagations.
    Wu SG; Lee GC
    Sci China B; 1989 Jun; 32(6):711-28. PubMed ID: 2775461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries.
    Qiao AK; Guo XL; Wu SG; Zeng YJ; Xu XH
    Med Eng Phys; 2004 Sep; 26(7):545-52. PubMed ID: 15271282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulated dye method for flow visualization with a computational model for blood flow.
    Kim T; Cheer AY; Dwyer HA
    J Biomech; 2004 Aug; 37(8):1125-36. PubMed ID: 15212917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of blood volume flow in slightly curved arteries from a single velocity profile.
    Leguy CA; Bosboom EM; Hoeks AP; van de Vosse FN
    J Biomech; 2009 Aug; 42(11):1664-72. PubMed ID: 19481210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the method of characteristics for the study of shock waves in models of blood flow in the aorta.
    Shoucri RM; Shoucri MM
    Cardiovasc Eng; 2007 Mar; 7(1):1-6. PubMed ID: 17342422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.