These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17567068)

  • 21. Synthesis and characterization of a new dimethacrylate monomer based on 5,50-bis(4-hydroxylphenyl)-hexahydro-4,7-methanoindan for root canal sealer application.
    He J; Liao L; Liu F; Luo Y; Jia D
    J Mater Sci Mater Med; 2010 Apr; 21(4):1135-42. PubMed ID: 20037771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal expansion characteristics of light-cured dental resins and resin composites.
    Sideridou I; Achilias DS; Kyrikou E
    Biomaterials; 2004 Jul; 25(15):3087-97. PubMed ID: 14967543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel Urethane-Dimethacrylate Monomers and Compositions for Use as Matrices in Dental Restorative Materials.
    Barszczewska-Rybarek IM; Chrószcz MW; Chladek G
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bis-GMA co-polymerizations: influence on conversion, flexural properties, fracture toughness and susceptibility to ethanol degradation of experimental composites.
    Pfeifer CS; Silva LR; Kawano Y; Braga RR
    Dent Mater; 2009 Sep; 25(9):1136-41. PubMed ID: 19395016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of fluorinated dimethacrylate monomer and its application in preparing Bis-GMA free dental resin.
    Yin M; Guo S; Liu F; He J
    J Mech Behav Biomed Mater; 2015 Nov; 51():337-44. PubMed ID: 26282076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, characterization and photopolymerization of a new dimethacrylate monomer based on (alpha-methyl-benzylidene)bisphenol used as root canal sealer.
    He J; Luo Y; Liu F; Jia D
    J Biomater Sci Polym Ed; 2010; 21(8-9):1191-205. PubMed ID: 20507715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicomechanical evaluation of low-shrinkage dental nanocomposites based on silsesquioxane cores.
    Soh MS; Yap AU; Sellinger A
    Eur J Oral Sci; 2007 Jun; 115(3):230-8. PubMed ID: 17587299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of new diacrylate monomers as substitutes for Bis-GMA and UDMA.
    Yoshinaga K; Yoshihara K; Yoshida Y
    Dent Mater; 2021 Jun; 37(6):e391-e398. PubMed ID: 33757654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and photopolymerization of N,N'-dimethyl,-N,N'-di(methacryloxy ethyl)-1,6-hexanediamine as a polymerizable amine coinitiator for dental restorations.
    Nie J; Bowman CN
    Biomaterials; 2002 Feb; 23(4):1221-6. PubMed ID: 11791926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marginal adaptation of BIS-GMA-based composites containing various diluents.
    Brauer GM; Dulik DM; Hughes HN; Dermann K; Rupp NW
    J Dent Res; 1981 Dec; 60(12):1966-71. PubMed ID: 6457854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organic overlayer model of a dental composite analyzed by laser desorption postionization mass spectrometry and photoemission.
    Zhou M; Wu C; Edirisinghe PD; Drummond JL; Hanley L
    J Biomed Mater Res A; 2006 Apr; 77(1):1-10. PubMed ID: 16345090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of chemical structure and composition of the resin phase on mechanical strength and vinyl conversion of amorphous calcium phosphate-based composites.
    Skrtic D; Antonucci JM; McDonough WG; Liu DW
    J Biomed Mater Res A; 2004 Mar; 68(4):763-72. PubMed ID: 14986331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of none Bisphenol A structure dimethacrylate monomer and characterization for dental composite applications.
    Liang X; Liu F; He J
    Dent Mater; 2014 Aug; 30(8):917-25. PubMed ID: 24950804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility.
    Kim JG; Chung CM
    Biomaterials; 2003 Sep; 24(21):3845-51. PubMed ID: 12818557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New dental composites containing multimethacrylate derivatives of bile acids: a comparative study with commercial monomers.
    Gauthier MA; Zhang Z; Zhu XX
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):824-32. PubMed ID: 20356008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Influence of Low-Molecular-Weight Monomers (TEGDMA, HDDMA, HEMA) on the Properties of Selected Matrices and Composites Based on Bis-GMA and UDMA.
    Szczesio-Wlodarczyk A; Polikowski A; Krasowski M; Fronczek M; Sokolowski J; Bociong K
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of low shrinkage stress dental composite with synthesized dimethacrylate oligomers.
    Luo S; Liu F; He J
    J Mech Behav Biomed Mater; 2019 Jun; 94():222-228. PubMed ID: 30921729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of silane-modified SiO
    Liu X; Wang Z; Zhao C; Bu W; Na H
    J Mech Behav Biomed Mater; 2018 Apr; 80():11-19. PubMed ID: 29414465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and molecular characterization of acrylate liquid crystalline resin monomers (ALCRM).
    He XP; Cai W; Guo L; Zhou LZ; Nie MH
    Cell Mol Biol (Noisy-le-grand); 2015 Oct; 61(5):52-7. PubMed ID: 26475389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low shrinkage light curable dental nanocomposites using SiO
    Miao X; Li Y; Zhang Q; Zhu M; Wang H
    Mater Sci Eng C Mater Biol Appl; 2012 Oct; 32(7):2115-2121. PubMed ID: 34062704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.