These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 17567115)
1. Heats of formation of beryllium, boron, aluminum, and silicon re-examined by means of W4 theory. Karton A; Martin JM J Phys Chem A; 2007 Jul; 111(26):5936-44. PubMed ID: 17567115 [TBL] [Abstract][Full Text] [Related]
2. Thermochemistry of new molecular species: SBr and HSBr. Ornellas FR J Chem Phys; 2007 May; 126(20):204314. PubMed ID: 17552769 [TBL] [Abstract][Full Text] [Related]
3. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3. Matus MH; Anderson KD; Camaioni DM; Autrey ST; Dixon DA J Phys Chem A; 2007 May; 111(20):4411-21. PubMed ID: 17444621 [TBL] [Abstract][Full Text] [Related]
4. Accurate thermochemical properties for energetic materials applications. I. Heats of formation of nitrogen-containing heterocycles and energetic precursor molecules from electronic structure theory. Gutowski KE; Rogers RD; Dixon DA J Phys Chem A; 2006 Oct; 110(42):11890-7. PubMed ID: 17048822 [TBL] [Abstract][Full Text] [Related]
5. Heats of formation of boron hydride anions and dianions and their ammonium salts [BnHmy-][NH4+]y with y=1-2. Nguyen MT; Matus MH; Dixon DA Inorg Chem; 2007 Sep; 46(18):7561-70. PubMed ID: 17691770 [TBL] [Abstract][Full Text] [Related]
6. Thermochemistry of the hypobromous and hypochlorous acids, HOBr and HOCl. Denis PA J Phys Chem A; 2006 May; 110(17):5887-92. PubMed ID: 16640385 [TBL] [Abstract][Full Text] [Related]
8. Quantum Monte Carlo calculations of the dimerization energy of borane. Fracchia F; Bressanini D; Morosi G J Chem Phys; 2011 Sep; 135(9):094503. PubMed ID: 21913771 [TBL] [Abstract][Full Text] [Related]
9. Accurate heats of formation of the "Arduengo-type" carbene and various adducts including H2 from ab initio molecular orbital theory. Dixon DA; Arduengo AJ J Phys Chem A; 2006 Feb; 110(5):1968-74. PubMed ID: 16451031 [TBL] [Abstract][Full Text] [Related]
10. Heats of formation of diphosphene, phosphinophosphinidene, diphosphine, and their methyl derivatives, and mechanism of the borane-assisted hydrogen release. Matus MH; Nguyen MT; Dixon DA J Phys Chem A; 2007 Mar; 111(9):1726-36. PubMed ID: 17298044 [TBL] [Abstract][Full Text] [Related]
11. Heats of formation of triplet ethylene, ethylidene, and acetylene. Nguyen MT; Matus MH; Lester WA; Dixon DA J Phys Chem A; 2008 Mar; 112(10):2082-7. PubMed ID: 18047300 [TBL] [Abstract][Full Text] [Related]
12. On the sigma,pi-energy separation of the aromatic stabilization energy of cyclobutadiene. Hohlneicher G; Packschies L; Weber J Phys Chem Chem Phys; 2007 May; 9(20):2517-30. PubMed ID: 17508084 [TBL] [Abstract][Full Text] [Related]
13. Photoion photoelectron coincidence spectroscopy of primary amines RCH2NH2 (R = H, CH3, C2H5, C3H7, i-C3H7): alkylamine and alkyl radical heats of formation by isodesmic reaction networks. Bodi A; Kercher JP; Bond C; Meteesatien P; Sztáray B; Baer T J Phys Chem A; 2006 Dec; 110(50):13425-33. PubMed ID: 17165868 [TBL] [Abstract][Full Text] [Related]
14. Ab initio chemical kinetics for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the related unimolecular decomposition of Si3H8 under a-Si/H CVD conditions. Raghunath P; Lin MC J Phys Chem A; 2013 Oct; 117(42):10811-23. PubMed ID: 24059703 [TBL] [Abstract][Full Text] [Related]
15. Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. Gutowski KE; Rogers RD; Dixon DA J Phys Chem B; 2007 May; 111(18):4788-800. PubMed ID: 17388432 [TBL] [Abstract][Full Text] [Related]
16. Ab initio chemical kinetic study for reactions of H atoms with SiH(4) and Si(2)H(6): comparison of theory and experiment. Wu SY; Raghunath P; Wu JS; Lin MC J Phys Chem A; 2010 Jan; 114(1):633-9. PubMed ID: 19938820 [TBL] [Abstract][Full Text] [Related]
17. Benchmark thermochemistry of the C(n)H(2n+2) alkane isomers (n = 2-8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria. Karton A; Gruzman D; Martin JM J Phys Chem A; 2009 Jul; 113(29):8434-47. PubMed ID: 19569667 [TBL] [Abstract][Full Text] [Related]
18. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. Karton A; Tarnopolsky A; Lamère JF; Schatz GC; Martin JM J Phys Chem A; 2008 Dec; 112(50):12868-86. PubMed ID: 18714947 [TBL] [Abstract][Full Text] [Related]
19. W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. Karton A; Rabinovich E; Martin JM; Ruscic B J Chem Phys; 2006 Oct; 125(14):144108. PubMed ID: 17042580 [TBL] [Abstract][Full Text] [Related]
20. Insertion of rare gas atoms into BF3 and AlF3 molecules: an ab initio investigation. Jayasekharan T; Ghanty TK J Chem Phys; 2006 Dec; 125(23):234106. PubMed ID: 17190546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]