BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 17567151)

  • 1. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase.
    Bailey MF; van der Schans EJ; Millar DP
    J Mol Biol; 2004 Feb; 336(3):673-93. PubMed ID: 15095980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis.
    Lam WC; Van der Schans EJ; Sowers LC; Millar DP
    Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing DNA polymerase fidelity mechanisms using time-resolved fluorescence anisotropy.
    Bailey MF; Thompson EH; Millar DP
    Methods; 2001 Sep; 25(1):62-77. PubMed ID: 11558998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment).
    Lam WC; Van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment.
    Furey WS; Joyce CM; Osborne MA; Klenerman D; Peliska JA; Balasubramanian S
    Biochemistry; 1998 Mar; 37(9):2979-90. PubMed ID: 9485450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex.
    Srivastava A; Singh K; Modak MJ
    Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for N-acetyl-2-aminofluorene-induced frameshift mutagenesis by Escherichia coli DNA polymerase I (Klenow fragment).
    Gill JP; Romano LJ
    Biochemistry; 2005 Nov; 44(46):15387-95. PubMed ID: 16285743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 A resolution.
    Gyarfas B; Olasagasti F; Benner S; Garalde D; Lieberman KR; Akeson M
    ACS Nano; 2009 Jun; 3(6):1457-66. PubMed ID: 19489560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue.
    Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D
    Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis.
    Lone S; Romano LJ
    Biochemistry; 2003 Apr; 42(13):3826-34. PubMed ID: 12667073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket.
    Kaushik N; Pandey VN; Modak MJ
    Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
    Cramer J; Rangam G; Marx A; Restle T
    Chembiochem; 2008 May; 9(8):1243-50. PubMed ID: 18399510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.