These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 17567151)
1. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF; Van der Schans EJ; Millar DP Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase. Bailey MF; van der Schans EJ; Millar DP J Mol Biol; 2004 Feb; 336(3):673-93. PubMed ID: 15095980 [TBL] [Abstract][Full Text] [Related]
3. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
4. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC; Van der Schans EJ; Sowers LC; Millar DP Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936 [TBL] [Abstract][Full Text] [Related]
5. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
7. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment). Lam WC; Van der Schans EJ; Joyce CM; Millar DP Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221 [TBL] [Abstract][Full Text] [Related]
8. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Furey WS; Joyce CM; Osborne MA; Klenerman D; Peliska JA; Balasubramanian S Biochemistry; 1998 Mar; 37(9):2979-90. PubMed ID: 9485450 [TBL] [Abstract][Full Text] [Related]
9. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related]
10. Mechanism for N-acetyl-2-aminofluorene-induced frameshift mutagenesis by Escherichia coli DNA polymerase I (Klenow fragment). Gill JP; Romano LJ Biochemistry; 2005 Nov; 44(46):15387-95. PubMed ID: 16285743 [TBL] [Abstract][Full Text] [Related]
11. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. Singh K; Modak MJ Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429 [TBL] [Abstract][Full Text] [Related]
12. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023 [TBL] [Abstract][Full Text] [Related]
13. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 A resolution. Gyarfas B; Olasagasti F; Benner S; Garalde D; Lieberman KR; Akeson M ACS Nano; 2009 Jun; 3(6):1457-66. PubMed ID: 19489560 [TBL] [Abstract][Full Text] [Related]
14. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
15. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue. Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic insights into replication across from bulky DNA adducts: a mutant polymerase I allows an N-acetyl-2-aminofluorene adduct to be accommodated during DNA synthesis. Lone S; Romano LJ Biochemistry; 2003 Apr; 42(13):3826-34. PubMed ID: 12667073 [TBL] [Abstract][Full Text] [Related]
17. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
18. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Kaushik N; Pandey VN; Modak MJ Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555 [TBL] [Abstract][Full Text] [Related]
19. Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase. Cramer J; Rangam G; Marx A; Restle T Chembiochem; 2008 May; 9(8):1243-50. PubMed ID: 18399510 [TBL] [Abstract][Full Text] [Related]
20. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs]. Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]