BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17567166)

  • 1. Substrate orientation in 4-oxalocrotonate tautomerase and its effect on QM/MM energy profiles.
    Tuttle T; Thiel W
    J Phys Chem B; 2007 Jul; 111(26):7665-74. PubMed ID: 17567166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment.
    Cisneros GA; Wang M; Silinski P; Fitzgerald MC; Yang W
    Biochemistry; 2004 Jun; 43(22):6885-92. PubMed ID: 15170325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio QM/MM study shows there is no general acid in the reaction catalyzed by 4-oxalocrotonate tautomerase.
    Cisneros GA; Liu H; Zhang Y; Yang W
    J Am Chem Soc; 2003 Aug; 125(34):10384-93. PubMed ID: 12926963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.
    Sevastik R; Himo F
    Bioorg Chem; 2007 Dec; 35(6):444-57. PubMed ID: 17904194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental determination on two substrates turned over by 4-oxalocrotonate tautomerase.
    Cisneros GA; Wang M; Silinski P; Fitzgerald MC; Yang W
    J Phys Chem A; 2006 Jan; 110(2):700-8. PubMed ID: 16405343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking of 4-oxalocrotonate tautomerase substrates: implications for the catalytic mechanism.
    Soares TA; Goodsell DS; Briggs JM; Ferreira R; Olson AJ
    Biopolymers; 1999 Sep; 50(3):319-28. PubMed ID: 10397792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A designed synthetic analogue of 4-OT is specific for a non-natural substrate.
    Metanis N; Keinan E; Dawson PE
    J Am Chem Soc; 2005 Apr; 127(16):5862-8. PubMed ID: 15839684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-of-the-sites binding of reactive intermediates and their analogues to 4-oxalocrotonate tautomerase and induced structural asymmetry of the enzyme.
    Azurmendi HF; Miller SG; Whitman CP; Mildvan AS
    Biochemistry; 2005 May; 44(21):7725-37. PubMed ID: 15909987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing protein environment in an enzymatic process: All-electron quantum chemical analysis combined with ab initio quantum mechanical/molecular mechanical modeling of chorismate mutase.
    Ishida T
    J Chem Phys; 2008 Sep; 129(12):125105. PubMed ID: 19045066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the enzymatic activity of 4-oxalocrotonate tautomerase and its mutant analogues: a computational study.
    Tuttle T; Keinan E; Thiel W
    J Phys Chem B; 2006 Oct; 110(39):19685-95. PubMed ID: 17004838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism.
    Metz S; Thiel W
    J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study.
    Cheng Y; Zhang Y; McCammon JA
    J Am Chem Soc; 2005 Feb; 127(5):1553-62. PubMed ID: 15686389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role of the amino-terminal proline in 4-oxalocrotonate tautomerase: affinity labeling and heteronuclear NMR studies.
    Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP; Chen LH
    Biochemistry; 1996 Jan; 35(3):803-13. PubMed ID: 8547260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 4-oxalocrotonate tautomerase- and YwhB-catalyzed hydration of 3E-haloacrylates: implications for the evolution of new enzymatic activities.
    Wang SC; Johnson WH; Whitman CP
    J Am Chem Soc; 2003 Nov; 125(47):14282-3. PubMed ID: 14624569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutants of 4-oxalocrotonate tautomerase catalyze the decarboxylation of oxaloacetate through an imine mechanism.
    Brik A; D'Souza LJ; Keinan E; Grynszpan F; Dawson PE
    Chembiochem; 2002 Sep; 3(9):845-51. PubMed ID: 12210985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic structures of phosphodiesterase-5 active site by combined molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations.
    Xiong Y; Lu HT; Zhan CG
    J Comput Chem; 2008 Jun; 29(8):1259-67. PubMed ID: 18161687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of 4-oxalocrotonate tautomerase by 2-oxo-3-pentynoate.
    Johnson WH; Czerwinski RM; Fitzgerald MC; Whitman CP
    Biochemistry; 1997 Dec; 36(50):15724-32. PubMed ID: 9398301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802.
    Metz S; Thiel W
    J Phys Chem B; 2010 Jan; 114(3):1506-17. PubMed ID: 20050623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic roles of the metal ion in the substrate-binding site of coenzyme B12-dependent diol dehydratase.
    Kamachi T; Doitomi K; Takahata M; Toraya T; Yoshizawa K
    Inorg Chem; 2011 Apr; 50(7):2944-52. PubMed ID: 21388166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.