These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 17567204)

  • 1. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.
    Yang M
    J Chem Phys; 2007 Jun; 126(21):214503. PubMed ID: 17567204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rigorous foundation of the diffusion-influenced bimolecular reaction kinetics.
    Kim JH; Lee S
    J Chem Phys; 2009 Jul; 131(1):014503. PubMed ID: 19586106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Master equation simulations of competing unimolecular and bimolecular reactions: application to OH production in the reaction of acetyl radical with O2.
    Maranzana A; Barker JR; Tonachini G
    Phys Chem Chem Phys; 2007 Aug; 9(31):4129-41. PubMed ID: 17687463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state master equation methods.
    Green NJ; Bhatti ZA
    Phys Chem Chem Phys; 2007 Aug; 9(31):4275-90. PubMed ID: 17687476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of diffusion on the kinetics of excited-state association--dissociation reactions: comparison of theory and simulation.
    Popov AV; Agmon N; Gopich IV; Szabo A
    J Chem Phys; 2004 Apr; 120(13):6111-6. PubMed ID: 15267495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of barrierless and activated chemical reactions in a dispersive medium within the fractional diffusion equation approach.
    Seki K; Bagchi B; Tachiya M
    J Phys Chem B; 2008 May; 112(19):6107-13. PubMed ID: 18179196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent density functional theory of open quantum systems in the linear-response regime.
    Tempel DG; Watson MA; Olivares-Amaya R; Aspuru-Guzik A
    J Chem Phys; 2011 Feb; 134(7):074116. PubMed ID: 21341837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Fokker-Planck-Kramers equation treatment for short-time dynamics of diffusion-controlled reaction in supercritical Lennard-Jones fluids over a wide density range.
    Ibuki K; Ueno M
    J Chem Phys; 2006 Apr; 124(13):134506. PubMed ID: 16613460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic dynamics of complexation reaction in the limit of small numbers.
    Ghosh K
    J Chem Phys; 2011 May; 134(19):195101. PubMed ID: 21599088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles.
    Choudhury SD; Kumbhakar M; Nath S; Pal H
    J Chem Phys; 2007 Nov; 127(19):194901. PubMed ID: 18035902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The study of bimolecular reactions under non-pseudo-first order conditions.
    Malatesta F
    Biophys Chem; 2005 Aug; 116(3):251-6. PubMed ID: 15896898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate concentration dependence of the diffusion-controlled steady-state rate constant.
    Dzubiella J; McCammon JA
    J Chem Phys; 2005 May; 122(18):184902. PubMed ID: 15918760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium.
    Togashi DM; Szczupak B; Ryder AG; Calvet A; O'Loughlin M
    J Phys Chem A; 2009 Mar; 113(12):2757-67. PubMed ID: 19254018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Langevin equation approach to electron transfer reactions in the diabatic basis.
    Song X; Wang H; Van Voorhis T
    J Chem Phys; 2008 Oct; 129(14):144502. PubMed ID: 19045153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the coherent description of diffusion-influenced fluorescence quenching experiments II: early events.
    Angulo G; Kattnig DR; Rosspeintner A; Grampp G; Vauthey E
    Chemistry; 2010 Feb; 16(7):2291-9. PubMed ID: 20066686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical mechanical theory for steady state systems. VIII. General theory for a Brownian particle driven by a time- and space-varying force.
    Attard P; Gray-Weale A
    J Chem Phys; 2008 Mar; 128(11):114509. PubMed ID: 18361593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental verification of the Smoluchowski theory for a bimolecular diffusion-controlled reaction in liquid phase.
    Arita T; Kajimoto O; Terazima M; Kimura Y
    J Chem Phys; 2004 Apr; 120(15):7071-4. PubMed ID: 15267610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.