BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17567747)

  • 1. Solvent-induced differentiation of protein backbone hydrogen bonds in calmodulin.
    Juranić N; Atanasova E; Streiff JH; Macura S; Prendergast FG
    Protein Sci; 2007 Jul; 16(7):1329-37. PubMed ID: 17567747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of protein structure and dynamics to scalar couplings across hydrogen bonds.
    Sass HJ; Schmid FF; Grzesiek S
    J Am Chem Soc; 2007 May; 129(18):5898-903. PubMed ID: 17429967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR.
    Cordier F; Grzesiek S
    J Mol Biol; 2002 Apr; 317(5):739-52. PubMed ID: 11955021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of H/D isotope effects on protein hydrogen-bonds by h3JNC' and 1JNC' couplings and peptide group 15N and 13C' chemical shifts.
    Jaravine VA; Cordier F; Grzesiek S
    J Biomol NMR; 2004 Jul; 29(3):309-18. PubMed ID: 15213429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of Calpha-Halpha...O=C hydrogen bonds in proteins by interresidue h3JCalphaC' scalar couplings.
    Cordier F; Barfield M; Grzesiek S
    J Am Chem Soc; 2003 Dec; 125(51):15750-1. PubMed ID: 14677958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural dependencies of h3JNC' scalar coupling in protein H-bond chains.
    Juranić N; Moncrieffe MC; Likić VA; Prendergast FG; Macura S
    J Am Chem Soc; 2002 Nov; 124(47):14221-6. PubMed ID: 12440921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin.
    Moore JM; Lepre CA; Gippert GP; Chazin WJ; Case DA; Wright PE
    J Mol Biol; 1991 Sep; 221(2):533-55. PubMed ID: 1920431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin.
    Qin Z; Squier TC
    Biophys J; 2001 Nov; 81(5):2908-18. PubMed ID: 11606301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using 1H NMR.
    Linse S; Teleman O; Drakenberg T
    Biochemistry; 1990 Jun; 29(25):5925-34. PubMed ID: 2166565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18-1 motif.
    Juranic N; Atanasova E; Filoteo AG; Macura S; Prendergast FG; Penniston JT; Strehler EE
    J Biol Chem; 2010 Feb; 285(6):4015-4024. PubMed ID: 19996092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of HN-H alpha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods.
    Kuboniwa H; Grzesiek S; Delaglio F; Bax A
    J Biomol NMR; 1994 Nov; 4(6):871-8. PubMed ID: 7812158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptaibol zervamicin IIb structure and dynamics refinement from transhydrogen bond J couplings.
    Shenkarev ZO; Balashova TA; Yakimenko ZA; Ovchinnikova TV; Arseniev AS
    Biophys J; 2004 Jun; 86(6):3687-99. PubMed ID: 15189865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy.
    Powers R; Garrett DS; March CJ; Frieden EA; Gronenborn AM; Clore GM
    Biochemistry; 1993 Jul; 32(26):6744-62. PubMed ID: 8329398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex.
    Schneider C; Sühnel J
    Biopolymers; 1999 Sep; 50(3):287-302. PubMed ID: 10397790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directly observed hydrogen bonds at calcium-binding-sites of calmodulin in solution relate to affinity of the calcium-binding.
    Juranić N; Atanasova E; Macura S; Prendergast FG
    J Inorg Biochem; 2009 Oct; 103(10):1415-8. PubMed ID: 19748127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-ray crystal and solution NMR structures.
    Braatz JA; Paulsen MD; Ornstein RL
    J Biomol Struct Dyn; 1992 Apr; 9(5):935-49. PubMed ID: 1326281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backbone dynamic properties of the central linker region of calcium-calmodulin in 35% trifluoroethanol.
    Brokx RD; Scheek RM; Weljie AM; Vogel HJ
    J Struct Biol; 2004 Jun; 146(3):272-80. PubMed ID: 15099569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy.
    Assadi-Porter FM; Abildgaard F; Blad H; Markley JL
    J Biol Chem; 2003 Aug; 278(33):31331-9. PubMed ID: 12732626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure.
    Wang L; Donald BR
    J Biomol NMR; 2004 Jul; 29(3):223-42. PubMed ID: 15213422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structure of apocalmodulin from Saccharomyces cerevisiae implies a mechanism for its unique Ca2+ binding property.
    Ishida H; Nakashima K; Kumaki Y; Nakata M; Hikichi K; Yazawa M
    Biochemistry; 2002 Dec; 41(52):15536-42. PubMed ID: 12501182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.