These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17567747)

  • 41. Three-dimensional structure of the complex between acyl-coenzyme A binding protein and palmitoyl-coenzyme A.
    Kragelund BB; Andersen KV; Madsen JC; Knudsen J; Poulsen FM
    J Mol Biol; 1993 Apr; 230(4):1260-77. PubMed ID: 8503960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Symmetrization of cationic hydrogen bridges of protonated sponges induced by solvent and counteranion interactions as revealed by NMR spectroscopy.
    Pietrzak M; Wehling JP; Kong S; Tolstoy PM; Shenderovich IG; López C; Claramunt RM; Elguero J; Denisov GS; Limbach HH
    Chemistry; 2010 Feb; 16(5):1679-90. PubMed ID: 20024986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings.
    Wang L; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():319-30. PubMed ID: 16448025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP).
    Gutiérrez-González LH; Ludwig C; Hohoff C; Rademacher M; Hanhoff T; Rüterjans H; Spener F; Lücke C
    Biochem J; 2002 Jun; 364(Pt 3):725-37. PubMed ID: 12049637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dynamics simulations of calcium-free calmodulin in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Apr; 19(5):801-19. PubMed ID: 11922837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of solvent upon CH...O hydrogen bonds with implications for protein folding.
    Scheiner S; Kar T
    J Phys Chem B; 2005 Mar; 109(8):3681-9. PubMed ID: 16851407
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding.
    Raschle T; Rios Flores P; Opitz C; Müller DJ; Hiller S
    Angew Chem Int Ed Engl; 2016 May; 55(20):5952-5. PubMed ID: 27062600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution solution structure of basic fibroblast growth factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.
    Moy FJ; Seddon AP; Böhlen P; Powers R
    Biochemistry; 1996 Oct; 35(42):13552-61. PubMed ID: 8885834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type.
    Skelton NJ; Aspiras F; Ogez J; Schall TJ
    Biochemistry; 1995 Apr; 34(16):5329-42. PubMed ID: 7537088
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural characterization by nuclear magnetic resonance spectroscopy of a genetically engineered high-affinity calmodulin-binding peptide derived from Bordetella pertussis adenylate cyclase.
    Munier H; Bouhss A; Gilles AM; Palibroda N; Bârzu O; Mispelter J; Craescu CT
    Arch Biochem Biophys; 1995 Jul; 320(2):224-35. PubMed ID: 7625828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The solution structure of bovine ferricytochrome b5 determined using heteronuclear NMR methods.
    Muskett FW; Kelly GP; Whitford D
    J Mol Biol; 1996 Apr; 258(1):172-89. PubMed ID: 8613986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solution structure of a human cystatin A variant, cystatin A2-98 M65L, by NMR spectroscopy. A possible role of the interactions between the N- and C-termini to maintain the inhibitory active form of cystatin A.
    Tate S; Ushioda T; Utsunomiya-Tate N; Shibuya K; Ohyama Y; Nakano Y; Kaji H; Inagaki F; Samejima T; Kainosho M
    Biochemistry; 1995 Nov; 34(45):14637-48. PubMed ID: 7578072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct detection of N-H[...]N hydrogen bonds in biomolecules by NMR spectroscopy.
    Dingley AJ; Nisius L; Cordier F; Grzesiek S
    Nat Protoc; 2008; 3(2):242-8. PubMed ID: 18274526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of the environment in the conformation of alpha-helices studied by protein database search and molecular dynamics simulations.
    Olivella M; Deupi X; Govaerts C; Pardo L
    Biophys J; 2002 Jun; 82(6):3207-13. PubMed ID: 12023245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural dynamics of calmodulin and troponin C.
    Mehler EL; Pascual-Ahuir JL; Weinstein H
    Protein Eng; 1991 Aug; 4(6):625-37. PubMed ID: 1946320
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The use of 1JC alpha H alpha coupling constants as a probe for protein backbone conformation.
    Vuister GW; Delaglio F; Bax A
    J Biomol NMR; 1993 Jan; 3(1):67-80. PubMed ID: 8448436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix.
    Kursula P
    Acta Crystallogr D Biol Crystallogr; 2014 Jan; 70(Pt 1):24-30. PubMed ID: 24419375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen bonding in helical polypeptides from molecular dynamics simulations and amide hydrogen exchange analysis: alamethicin and melittin in methanol.
    Sessions RB; Gibbs N; Dempsey CE
    Biophys J; 1998 Jan; 74(1):138-52. PubMed ID: 9449318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and dynamics of calmodulin in solution.
    Wriggers W; Mehler E; Pitici F; Weinstein H; Schulten K
    Biophys J; 1998 Apr; 74(4):1622-39. PubMed ID: 9545028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the Apo-->(Ca2+)II1-->(Ca2+)I,II2 binding pathway.
    Akke M; Forsén S; Chazin WJ
    J Mol Biol; 1995 Sep; 252(1):102-21. PubMed ID: 7666423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.