These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17567807)

  • 1. Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.
    Avissar M; Furman AC; Saunders JC; Parsons TD
    J Neurosci; 2007 Jun; 27(24):6461-72. PubMed ID: 17567807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic distribution of short-term adaptation properties in the cochlear nerve of normal and acoustically overexposed chicks.
    Crumling MA; Saunders JC
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):54-68. PubMed ID: 17200911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input-driven components of spike-frequency adaptation can be unmasked in vivo.
    Gollisch T; Herz AV
    J Neurosci; 2004 Aug; 24(34):7435-44. PubMed ID: 15329390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times.
    Peterson AJ; Heil P
    Hear Res; 2018 Jun; 363():1-27. PubMed ID: 28987786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that rapid vesicle replenishment of the synaptic ribbon mediates recovery from short-term adaptation at the hair cell afferent synapse.
    Spassova MA; Avissar M; Furman AC; Crumling MA; Saunders JC; Parsons TD
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):376-90. PubMed ID: 15675002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractoriness enhances temporal coding by auditory nerve fibers.
    Avissar M; Wittig JH; Saunders JC; Parsons TD
    J Neurosci; 2013 May; 33(18):7681-90. PubMed ID: 23637161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons.
    Buran BN; Strenzke N; Neef A; Gundelfinger ED; Moser T; Liberman MC
    J Neurosci; 2010 Jun; 30(22):7587-97. PubMed ID: 20519533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive hearing loss disrupts synaptic and spike adaptation in developing auditory cortex.
    Xu H; Kotak VC; Sanes DH
    J Neurosci; 2007 Aug; 27(35):9417-26. PubMed ID: 17728455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: a modeling study.
    Wittig JH; Parsons TD
    J Neurophysiol; 2008 Oct; 100(4):1724-39. PubMed ID: 18667546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron.
    Benda J; Hennig RM
    J Comput Neurosci; 2008 Apr; 24(2):113-36. PubMed ID: 17534706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic range adaptation to sound level statistics in the auditory nerve.
    Wen B; Wang GI; Dean I; Delgutte B
    J Neurosci; 2009 Nov; 29(44):13797-808. PubMed ID: 19889991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of firing rate and spike-timing precision in the avian cochlear nucleus.
    Kuznetsova MS; Higgs MH; Spain WJ
    J Neurosci; 2008 Nov; 28(46):11906-15. PubMed ID: 19005056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function.
    Goutman JD
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9719-9724. PubMed ID: 28827351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
    Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I
    J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
    Zhang F; Miller CA; Robinson BK; Abbas PJ; Hu N
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):356-72. PubMed ID: 17562109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.