These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17567807)

  • 21. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase Locking of Auditory Nerve Fibers: The Role of Lowpass Filtering by Hair Cells.
    Peterson AJ; Heil P
    J Neurosci; 2020 Jun; 40(24):4700-4714. PubMed ID: 32376778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spike timing precision changes with spike rate adaptation in the owl's auditory space map.
    Keller CH; Takahashi TT
    J Neurophysiol; 2015 Oct; 114(4):2204-19. PubMed ID: 26269555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of bandwidths in the inferior colliculus and the auditory nerve. I. Measurement using a spectrally manipulated stimulus.
    Mc Laughlin M; Van de Sande B; van der Heijden M; Joris PX
    J Neurophysiol; 2007 Nov; 98(5):2566-79. PubMed ID: 17881484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
    Zilany MS; Carney LH
    J Neurosci; 2010 Aug; 30(31):10380-90. PubMed ID: 20685981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Balanced inhibition and excitation underlies spike firing regularity in ventral cochlear nucleus chopper neurons.
    Paolini AG; Clarey JC; Needham K; Clark GM
    Eur J Neurosci; 2005 Mar; 21(5):1236-48. PubMed ID: 15813933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time course of dynamic range adaptation in the auditory nerve.
    Wen B; Wang GI; Dean I; Delgutte B
    J Neurophysiol; 2012 Jul; 108(1):69-82. PubMed ID: 22457465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust sound onset detection using leaky integrate-and-fire neurons with depressing synapses.
    Smith LS; Fraser DS
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1125-34. PubMed ID: 15484889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis.
    Elliott TM; Christensen-Dalsgaard J; Kelley DB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Dec; 193(12):1243-57. PubMed ID: 17989982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-spike latency of auditory neurons revisited.
    Heil P
    Curr Opin Neurobiol; 2004 Aug; 14(4):461-7. PubMed ID: 15321067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking.
    Heil P; Peterson AJ
    Synapse; 2017 Jan; 71(1):5-36. PubMed ID: 27466786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery.
    Oliver D; Taberner AM; Thurm H; Sausbier M; Arntz C; Ruth P; Fakler B; Liberman MC
    J Neurosci; 2006 Jun; 26(23):6181-9. PubMed ID: 16763026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve.
    Krishna BS
    J Comput Neurosci; 2002; 13(2):71-91. PubMed ID: 12215723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature dependence of temporal resolution in an insect nervous system.
    Franz A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):261-71. PubMed ID: 12012097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.