These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17567999)

  • 1. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches.
    Jin VX; O'Geen H; Iyengar S; Green R; Farnham PJ
    Genome Res; 2007 Jun; 17(6):807-17. PubMed ID: 17567999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using ChIPMotifs for de novo motif discovery of OCT4 and ZNF263 based on ChIP-based high-throughput experiments.
    Kennedy BA; Lan X; Huang TH; Farnham PJ; Jin VX
    Methods Mol Biol; 2012; 802():323-34. PubMed ID: 22130890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets.
    Murakami S; Ninomiya W; Sakamoto E; Shibata T; Akiyama H; Tashiro F
    Stem Cells; 2015 Sep; 33(9):2652-63. PubMed ID: 26013162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GAPWM: a genetic algorithm method for optimizing a position weight matrix.
    Li L; Liang Y; Bass RL
    Bioinformatics; 2007 May; 23(10):1188-94. PubMed ID: 17341493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data--a case study using E2F1.
    Jin VX; Rabinovich A; Squazzo SL; Green R; Farnham PJ
    Genome Res; 2006 Dec; 16(12):1585-95. PubMed ID: 17053090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. W-ChIPMotifs: a web application tool for de novo motif discovery from ChIP-based high-throughput data.
    Jin VX; Apostolos J; Nagisetty NS; Farnham PJ
    Bioinformatics; 2009 Dec; 25(23):3191-3. PubMed ID: 19797408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9].
    Harley VR; Clarkson MJ; Argentaro A
    Endocr Rev; 2003 Aug; 24(4):466-87. PubMed ID: 12920151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of CATSPER1 expression by the testis-determining gene SRY.
    Olivares A; Hernández-Reyes A; Felix R; Forero Á; Mata-Rocha M; Hernández-Sánchez J; Santos I; Aguirre-Alvarado C; Oviedo N
    PLoS One; 2018; 13(10):e0205744. PubMed ID: 30379860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The porcine SRY promoter is transactivated within a male genital ridge environment.
    Daneau I; Pilon N; Boyer A; Behdjani R; Overbeek PA; Viger R; Lussier J; Silversides DW
    Genesis; 2002 Aug; 33(4):170-80. PubMed ID: 12203914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic mouse analysis of Sry expression during the pre- and peri-implantation stage.
    Silversides DW; Raiwet DL; Souchkova O; Viger RS; Pilon N
    Dev Dyn; 2012 Jul; 241(7):1192-204. PubMed ID: 22539273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs.
    O'Geen H; Squazzo SL; Iyengar S; Blahnik K; Rinn JL; Chang HY; Green R; Farnham PJ
    PLoS Genet; 2007 Jun; 3(6):e89. PubMed ID: 17542650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic and expression analysis of multiple Sry loci from a single Rattus norvegicus Y chromosome.
    Turner ME; Martin C; Martins AS; Dunmire J; Farkas J; Ely DL; Milsted A
    BMC Genet; 2007 Apr; 8():11. PubMed ID: 17408480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation analysis of sequences flanking the testis-determining gene Sry in 17 mammalian species.
    Larney C; Bailey TL; Koopman P
    BMC Dev Biol; 2015 Oct; 15():34. PubMed ID: 26444262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters.
    Araujo FC; Milsted A; Watanabe IK; Del Puerto HL; Santos RA; Lazar J; Reis FM; Prokop JW
    Physiol Genomics; 2015 May; 47(5):177-86. PubMed ID: 25759379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GCNF regulates OCT4 expression through its interactions with nuclear receptor binding elements in NCCIT cells.
    Park SW; Do HJ; Choi W; Kim JH; Song H; Seo HG; Kim JH
    J Cell Biochem; 2018 Mar; 119(3):2719-2730. PubMed ID: 29057499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2.
    Iida H; Suzuki M; Goitsuka R; Ueno H
    Int J Oncol; 2012 Jan; 40(1):71-9. PubMed ID: 21947321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SRY: A transcriptional activator of mammalian testis determination.
    Sekido R
    Int J Biochem Cell Biol; 2010 Mar; 42(3):417-20. PubMed ID: 20005972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of human Oct4 by steroidogenic factor-1.
    Yang HM; Do HJ; Kim DK; Park JK; Chang WK; Chung HM; Choi SY; Kim JH
    J Cell Biochem; 2007 Aug; 101(5):1198-209. PubMed ID: 17226773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nspc1 regulates the key pluripotent Oct4-Nanog-Sox2 axis in P19 embryonal carcinoma cells via directly activating Oct4.
    Li H; Fan R; Sun M; Jiang T; Gong Y
    Biochem Biophys Res Commun; 2013 Nov; 440(4):527-32. PubMed ID: 24113379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.