BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 17568186)

  • 1. Possible involvement of persistent activity of the mammalian target of rapamycin pathway in the cisplatin resistance of AFP-producing gastric cancer cells.
    Kamata S; Kishimoto T; Kobayashi S; Miyazaki M; Ishikura H
    Cancer Biol Ther; 2007 Jul; 6(7):1036-43. PubMed ID: 17568186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapamycin enhanced the antitumor efficacy of oxaliplatin in cisplatin-resistant ovarian cancer cells A2780cis both in vitro and in vivo.
    Liu J; Zhang L; Zhang X; Xing X
    J Chemother; 2015; 27(6):358-64. PubMed ID: 25976336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition.
    Ito H; Ichiyanagi O; Naito S; Bilim VN; Tomita Y; Kato T; Nagaoka A; Tsuchiya N
    BMC Cancer; 2016 Jul; 16():393. PubMed ID: 27387559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual mTORC1 and mTORC2 inhibitor shows antitumor activity in esophageal squamous cell carcinoma cells and sensitizes them to cisplatin.
    Huang Y; Xi Q; Chen Y; Wang J; Peng P; Xia S; Yu S
    Anticancer Drugs; 2013 Oct; 24(9):889-98. PubMed ID: 23838676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenotransplantation of alpha-fetoprotein-producing gastric cancers into nude mice. Characteristics and responses to chemotherapy.
    Chang YC; Nagasue N; Kohno H; Ohiwa K; Yamanoi A; Nakamura T
    Cancer; 1992 Feb; 69(4):872-7. PubMed ID: 1370917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance.
    Yu L; Gu C; Zhong D; Shi L; Kong Y; Zhou Z; Liu S
    Cancer Lett; 2014 Dec; 355(1):34-45. PubMed ID: 25236911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cisplatin induces chemoresistance through the PTGS2-mediated anti-apoptosis in gastric cancer.
    Lin XM; Li S; Zhou C; Li RZ; Wang H; Luo W; Huang YS; Chen LK; Cai JL; Wang TX; Zhang QH; Cao H; Wu XP
    Int J Biochem Cell Biol; 2019 Nov; 116():105610. PubMed ID: 31518663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of apoptosis by miR‑122‑5p in α‑fetoprotein‑producing gastric cancer.
    Maruyama S; Furuya S; Shiraishi K; Shimizu H; Saito R; Akaike H; Hosomura N; Kawaguchi Y; Amemiya H; Kawaida H; Sudo M; Inoue S; Kono H; Ichikawa D
    Oncol Rep; 2019 Apr; 41(4):2595-2600. PubMed ID: 30816512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model.
    Lang SA; Gaumann A; Koehl GE; Seidel U; Bataille F; Klein D; Ellis LM; Bolder U; Hofstaedter F; Schlitt HJ; Geissler EK; Stoeltzing O
    Int J Cancer; 2007 Apr; 120(8):1803-10. PubMed ID: 17230506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCI-779 (Temsirolimus) exhibits increased anti-tumor activity in low EGFR expressing HNSCC cell lines and is effective in cells with acquired resistance to cisplatin or cetuximab.
    Niehr F; Weichert W; Stenzinger A; Budach V; Tinhofer I
    J Transl Med; 2015 Apr; 13():106. PubMed ID: 25890004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway.
    Lin CC; Yeh HH; Huang WL; Yan JJ; Lai WW; Su WP; Chen HH; Su WC
    Am J Respir Cell Mol Biol; 2013 Aug; 49(2):241-50. PubMed ID: 23526220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined treatment with cisplatin and sirolimus to enhance cell death in human mesothelioma.
    Hartman ML; Esposito JM; Yeap BY; Sugarbaker DJ
    J Thorac Cardiovasc Surg; 2010 May; 139(5):1233-40. PubMed ID: 19853261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2.
    Yang M; Shan X; Zhou X; Qiu T; Zhu W; Ding Y; Shu Y; Liu P
    Anticancer Agents Med Chem; 2014; 14(6):884-91. PubMed ID: 24875127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of AFP and STAT3 is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in AFP-producing gastric cancer cells.
    Jia Y; Liu D; Xiao D; Ma X; Han S; Zheng Y; Sun S; Zhang M; Gao H; Cui X; Wang Y
    PLoS One; 2013; 8(1):e54774. PubMed ID: 23382965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinicopathologic and prognostic characteristics of alpha-fetoprotein-producing gastric cancer.
    He R; Yang Q; Dong X; Wang Y; Zhang W; Shen L; Zhang Z
    Oncotarget; 2017 Apr; 8(14):23817-23830. PubMed ID: 28423604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism study of lentiviral vector carrying methioninase enhances the sensitivity of drug-resistant gastric cancer cells to Cisplatin.
    Xin L; Yang WF; Zhang HT; Li YF; Liu C
    Br J Cancer; 2018 May; 118(9):1189-1199. PubMed ID: 29576621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cucurbitacin B induces autophagy and apoptosis by suppressing CIP2A/PP2A/mTORC1 signaling axis in human cisplatin resistant gastric cancer cells.
    Liu X; Duan C; Ji J; Zhang T; Yuan X; Zhang Y; Ma W; Yang J; Yang L; Jiang Z; Yu H; Liu Y
    Oncol Rep; 2017 Jul; 38(1):271-278. PubMed ID: 28534965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the mechanism of rapamycin mediating the sensitivity of pancreatic cancer cells to cisplatin through PI3K/AKT/mTOR signaling pathway.
    Li B; Yang J; Lu Z; Liu B; Liu F
    J BUON; 2019; 24(2):739-745. PubMed ID: 31128031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting the mTOR pathway synergistically enhances cytotoxicity in ovarian cancer cells induced by etoposide through upregulation of c-Jun.
    Itamochi H; Oishi T; Shimada M; Sato S; Uegaki K; Naniwa J; Sato S; Nonaka M; Terakawa N; Kigawa J; Harada T
    Clin Cancer Res; 2011 Jul; 17(14):4742-50. PubMed ID: 21610153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mTORC1 Up-Regulates GP73 to Promote Proliferation and Migration of Hepatocellular Carcinoma Cells and Growth of Xenograft Tumors in Mice.
    Chen X; Wang Y; Tao J; Shi Y; Gai X; Huang F; Ma Q; Zhou Z; Chen H; Zhang H; Liu Z; Sun Q; Peng H; Chen R; Jing Y; Yang H; Mao Y; Zhang H
    Gastroenterology; 2015 Sep; 149(3):741-52.e14. PubMed ID: 25980751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.