These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17568656)

  • 41. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.
    Mohanty CR; Adapala S; Meikap BC
    J Hazard Mater; 2009 Jun; 165(1-3):427-34. PubMed ID: 19036509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental study on dust removal optimization of shearer external spray in air velocity.
    Zhang J; Sun T; Yang X; Liu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(2):181-189. PubMed ID: 33370155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of NOx from flue gas with radical oxidation combined with chemical scrubber.
    Lin H; Gao X; Luo ZY; Guan SP; Cen KF; Huang Z
    J Environ Sci (China); 2004; 16(3):462-5. PubMed ID: 15272724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ droplet size and speed determination in a fluid-bed granulator.
    Ehlers H; Larjo J; Antikainen O; Räikkönen H; Heinämäki J; Yliruusi J
    Int J Pharm; 2010 May; 391(1-2):148-54. PubMed ID: 20211713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.
    Izquierdo MT; Rubio B
    J Hazard Mater; 2008 Jun; 155(1-2):199-205. PubMed ID: 18155355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Desulfurizing absorbent for flue gas and its absorption mechanism.
    Li H; Chen WR; Liu DZ
    J Environ Sci (China); 2003 Jan; 15(1):92-6. PubMed ID: 12602610
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling of corona discharge combined with Mn²⁺ catalysis for the removal of SO₂ from simulated flue gas.
    Jiwu L; Lei F
    Chemosphere; 2013 May; 91(9):1374-9. PubMed ID: 23490184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor.
    Rahimpour MR; Asgari A
    J Hazard Mater; 2008 May; 153(1-2):557-65. PubMed ID: 17936505
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.
    Krewski D; Jerrett M; Burnett RT; Ma R; Hughes E; Shi Y; Turner MC; Pope CA; Thurston G; Calle EE; Thun MJ; Beckerman B; DeLuca P; Finkelstein N; Ito K; Moore DK; Newbold KB; Ramsay T; Ross Z; Shin H; Tempalski B
    Res Rep Health Eff Inst; 2009 May; (140):5-114; discussion 115-36. PubMed ID: 19627030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubbers.
    Taheri M; Mohebbi A
    J Hazard Mater; 2008 Aug; 157(1):122-9. PubMed ID: 18280647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Droplet size of cooling tower fog.
    Rothman T; Ledbetter JO
    Environ Lett; 1975; 10(3):191-203. PubMed ID: 1240052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Landfill gas upgrading with countercurrent water wash.
    Rasi S; Läntelä J; Veijanen A; Rintala J
    Waste Manag; 2008; 28(9):1528-34. PubMed ID: 17851064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling the impact of sea-spray on particle concentrations in a coastal city.
    Pryor SC; Barthelmie RJ; Schoof JT; Binkowski FS; Delle Monache L; Stull R
    Sci Total Environ; 2008 Feb; 391(1):132-42. PubMed ID: 18061242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regular self-motion of a liquid droplet powered by the chemical marangoni effect.
    Nagai K; Sumino Y; Yoshikawa K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrospray deposition, model, and experiment: toward general control of film morphology.
    Rietveld IB; Kobayashi K; Yamada H; Matsushige K
    J Phys Chem B; 2006 Nov; 110(46):23351-64. PubMed ID: 17107186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.
    Gamisans X; Sarrà M; Lafuente FJ
    J Hazard Mater; 2002 Mar; 90(3):251-66. PubMed ID: 11893424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A method for predicting the performance of packed columns operating with a reactive scrubbing liquid that control gaseous air pollutants.
    Kerr CR
    J Air Waste Manag Assoc; 2002 Apr; 52(4):396-9. PubMed ID: 12002184
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling and optimization of process variables for HCl gas removal by response surface methodology.
    Bal M; Biswas S; Behera SK; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(4):359-366. PubMed ID: 30628528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.