These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 17568945)
1. Effect of fosmidomycin on metabolic and transcript profiles of the methylerythritol phosphate pathway in Plasmodium falciparum. Cassera MB; Merino EF; Peres VJ; Kimura EA; Wunderlich G; Katzin AM Mem Inst Oswaldo Cruz; 2007 Jun; 102(3):377-83. PubMed ID: 17568945 [TBL] [Abstract][Full Text] [Related]
2. The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. Cassera MB; Gozzo FC; D'Alexandri FL; Merino EF; del Portillo HA; Peres VJ; Almeida IC; Eberlin MN; Wunderlich G; Wiesner J; Jomaa H; Kimura EA; Katzin AM J Biol Chem; 2004 Dec; 279(50):51749-59. PubMed ID: 15452112 [TBL] [Abstract][Full Text] [Related]
3. A sugar phosphatase regulates the methylerythritol phosphate (MEP) pathway in malaria parasites. Guggisberg AM; Park J; Edwards RL; Kelly ML; Hodge DM; Tolia NH; Odom AR Nat Commun; 2014 Jul; 5():4467. PubMed ID: 25058848 [TBL] [Abstract][Full Text] [Related]
4. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum. Singh VK; Ghosh I FEBS Lett; 2013 Sep; 587(17):2806-17. PubMed ID: 23816706 [TBL] [Abstract][Full Text] [Related]
5. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Howe R; Kelly M; Jimah J; Hodge D; Odom AR Eukaryot Cell; 2013 Feb; 12(2):215-23. PubMed ID: 23223036 [TBL] [Abstract][Full Text] [Related]
6. The MEP pathway in Babesia orientalis apicoplast, a potential target for anti-babesiosis drug development. He L; He P; Luo X; Li M; Yu L; Guo J; Zhan X; Zhu G; Zhao J Parasit Vectors; 2018 Aug; 11(1):452. PubMed ID: 30081952 [TBL] [Abstract][Full Text] [Related]
7. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. Hemmerlin A; Hoeffler JF; Meyer O; Tritsch D; Kagan IA; Grosdemange-Billiard C; Rohmer M; Bach TJ J Biol Chem; 2003 Jul; 278(29):26666-76. PubMed ID: 12736259 [TBL] [Abstract][Full Text] [Related]
8. Isoprenoid biosynthesis via the methylerythritol phosphate pathway: structural variations around phosphonate anchor and spacer of fosmidomycin, a potent inhibitor of deoxyxylulose phosphate reductoisomerase. Zinglé C; Kuntz L; Tritsch D; Grosdemange-Billiard C; Rohmer M J Org Chem; 2010 May; 75(10):3203-7. PubMed ID: 20429517 [TBL] [Abstract][Full Text] [Related]
9. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Wanke M; Skorupinska-Tudek K; Swiezewska E Acta Biochim Pol; 2001; 48(3):663-72. PubMed ID: 11833775 [TBL] [Abstract][Full Text] [Related]
11. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus. Han M; Heppel SC; Su T; Bogs J; Zu Y; An Z; Rausch T PLoS One; 2013; 8(5):e62467. PubMed ID: 23650515 [TBL] [Abstract][Full Text] [Related]
12. Targeting the methyl erythritol phosphate (MEP) pathway for novel antimalarial, antibacterial and herbicidal drug discovery: inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) enzyme. Singh N; Chevé G; Avery MA; McCurdy CR Curr Pharm Des; 2007; 13(11):1161-77. PubMed ID: 17430177 [TBL] [Abstract][Full Text] [Related]
13. Apicoplast Metabolism: Parasite's Achilles' Heel. Kadian K; Gupta Y; Singh HV; Kempaiah P; Rawat M Curr Top Med Chem; 2018; 18(22):1987-1997. PubMed ID: 30499407 [TBL] [Abstract][Full Text] [Related]
16. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. Skorupinska-Tudek K; Poznanski J; Wojcik J; Bienkowski T; Szostkiewicz I; Zelman-Femiak M; Bajda A; Chojnacki T; Olszowska O; Grunler J; Meyer O; Rohmer M; Danikiewicz W; Swiezewska E J Biol Chem; 2008 Jul; 283(30):21024-35. PubMed ID: 18502754 [TBL] [Abstract][Full Text] [Related]
17. The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Lichtenthaler HK; Zeidler J; Schwender J; Müller C Z Naturforsch C J Biosci; 2000; 55(5-6):305-13. PubMed ID: 10928537 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. Guevara-García A; San Román C; Arroyo A; Cortés ME; de la Luz Gutiérrez-Nava M; León P Plant Cell; 2005 Feb; 17(2):628-43. PubMed ID: 15659625 [TBL] [Abstract][Full Text] [Related]
19. The methylerythritol phosphate pathway and its significance as a novel drug target. Testa CA; Brown MJ Curr Pharm Biotechnol; 2003 Aug; 4(4):248-59. PubMed ID: 14529427 [TBL] [Abstract][Full Text] [Related]
20. Determination of the active stereoisomer of the MEP pathway-targeting antimalarial agent MMV008138, and initial structure-activity studies. Yao ZK; Krai PM; Merino EF; Simpson ME; Slebodnick C; Cassera MB; Carlier PR Bioorg Med Chem Lett; 2015 Apr; 25(7):1515-9. PubMed ID: 25754494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]