BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

890 related articles for article (PubMed ID: 17569501)

  • 1. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Analyst; 2004 Oct; 129(10):938-43. PubMed ID: 15457327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems.
    Lenshof A; Magnusson C; Laurell T
    Lab Chip; 2012 Apr; 12(7):1210-23. PubMed ID: 22362021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Lab Chip; 2005 Jan; 5(1):20-2. PubMed ID: 15616735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous flow separations in microfluidic devices.
    Pamme N
    Lab Chip; 2007 Dec; 7(12):1644-59. PubMed ID: 18030382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels.
    Park JS; Jung HI
    Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidics 11: Affinity specific extraction and sample decomplexing using continuous flow acoustophoresis.
    Augustsson P; Laurell T
    Lab Chip; 2012 Apr; 12(10):1742-52. PubMed ID: 22465997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomplexing biofluids using microchip based acoustophoresis.
    Augustsson P; Persson J; Ekström S; Ohlin M; Laurell T
    Lab Chip; 2009 Mar; 9(6):810-8. PubMed ID: 19255663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.
    Cheng IF; Froude VE; Zhu Y; Chang HC; Chang HC
    Lab Chip; 2009 Nov; 9(22):3193-201. PubMed ID: 19865725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.
    Nordin M; Laurell T
    Lab Chip; 2012 Nov; 12(22):4610-6. PubMed ID: 22918416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cytometry with a light touch: sorting microscopic matter with an optical lattice.
    MacDonald MP; Neale S; Paterson L; Richies A; Dholakia K; Spalding GC
    J Biol Regul Homeost Agents; 2004; 18(2):200-5. PubMed ID: 15471228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.