These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17569662)
1. N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation. Goñi-Oliver P; Lucas JJ; Avila J; Hernández F J Biol Chem; 2007 Aug; 282(31):22406-13. PubMed ID: 17569662 [TBL] [Abstract][Full Text] [Related]
2. Calpain-mediated truncation of GSK-3 in post-mortem brain samples. Goñi-Oliver P; Avila J; Hernández F J Neurosci Res; 2009 Apr; 87(5):1156-61. PubMed ID: 19006085 [TBL] [Abstract][Full Text] [Related]
3. Memantine inhibits calpain-mediated truncation of GSK-3 induced by NMDA: implications in Alzheimer's disease. Goñi-Oliver P; Avila J; Hernández F J Alzheimers Dis; 2009; 18(4):843-8. PubMed ID: 19661623 [TBL] [Abstract][Full Text] [Related]
4. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini. Ma S; Liu S; Huang Q; Xie B; Lai B; Wang C; Song B; Li M J Biol Chem; 2012 Jun; 287(27):22521-32. PubMed ID: 22496446 [TBL] [Abstract][Full Text] [Related]
5. Cleavage of GSK-3β by calpain counteracts the inhibitory effect of Ser9 phosphorylation on GSK-3β activity induced by H₂O₂. Feng Y; Xia Y; Yu G; Shu X; Ge H; Zeng K; Wang J; Wang X J Neurochem; 2013 Jul; 126(2):234-42. PubMed ID: 23646926 [TBL] [Abstract][Full Text] [Related]
6. Calpain regulates N-terminal interaction of GSK-3β with 14-3-3ζ, p53 and PKB but not with axin. Goñi-Oliver P; Avila J; Hernández F Neurochem Int; 2011 Aug; 59(2):97-100. PubMed ID: 21672591 [TBL] [Abstract][Full Text] [Related]
7. Regulation of proteolytic cleavage of retinoid X receptor-α by GSK-3β. Gao W; Liu J; Hu M; Huang M; Cai S; Zeng Z; Lin B; Cao X; Chen J; Zeng JZ; Zhou H; Zhang XK Carcinogenesis; 2013 Jun; 34(6):1208-15. PubMed ID: 23389291 [TBL] [Abstract][Full Text] [Related]
8. Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer's disease. Jin N; Yin X; Yu D; Cao M; Gong CX; Iqbal K; Ding F; Gu X; Liu F Sci Rep; 2015 Feb; 5():8187. PubMed ID: 25641096 [TBL] [Abstract][Full Text] [Related]
9. Distinct molecular regulation of glycogen synthase kinase-3alpha isozyme controlled by its N-terminal region: functional role in calcium/calpain signaling. Azoulay-Alfaguter I; Yaffe Y; Licht-Murava A; Urbanska M; Jaworski J; Pietrokovski S; Hirschberg K; Eldar-Finkelman H J Biol Chem; 2011 Apr; 286(15):13470-80. PubMed ID: 21266584 [TBL] [Abstract][Full Text] [Related]
10. Regulation of GSK-3beta by calpain in the 3-nitropropionic acid model. Crespo-Biel N; Camins A; Gutiérrez-Cuesta J; Melchiorri D; Nicoletti F; Pallàs M; Canudas AM Hippocampus; 2010 Aug; 20(8):962-70. PubMed ID: 19714564 [TBL] [Abstract][Full Text] [Related]
11. Glycogen synthase kinase-3beta is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Kandasamy AD; Schulz R Cardiovasc Res; 2009 Sep; 83(4):698-706. PubMed ID: 19493954 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. Zhang F; Phiel CJ; Spece L; Gurvich N; Klein PS J Biol Chem; 2003 Aug; 278(35):33067-77. PubMed ID: 12796505 [TBL] [Abstract][Full Text] [Related]
13. Concomitant degradation of beta-catenin and GSK-3 beta potently contributes to glutamate-induced neurotoxicity in rat hippocampal slice cultures. Lee JH; Lee EO; Kang JL; Chong YH J Neurochem; 2008 Aug; 106(3):1066-77. PubMed ID: 18445133 [TBL] [Abstract][Full Text] [Related]
14. Neurotoxicity induces cleavage of p35 to p25 by calpain. Lee MS; Kwon YT; Li M; Peng J; Friedlander RM; Tsai LH Nature; 2000 May; 405(6784):360-4. PubMed ID: 10830966 [TBL] [Abstract][Full Text] [Related]
15. Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. Liang MH; Chuang DM J Biol Chem; 2007 Feb; 282(6):3904-17. PubMed ID: 17148450 [TBL] [Abstract][Full Text] [Related]
16. The regulation of cyclin-dependent kinase 5 activity through the metabolism of p35 or p39 Cdk5 activator. Hisanaga S; Saito T Neurosignals; 2003; 12(4-5):221-9. PubMed ID: 14673209 [TBL] [Abstract][Full Text] [Related]
17. Activity-dependent cleavage of brain glutamic acid decarboxylase 65 by calpain. Wei J; Lin CH; Wu H; Jin Y; Lee YH; Wu JY J Neurochem; 2006 Sep; 98(5):1688-95. PubMed ID: 16879709 [TBL] [Abstract][Full Text] [Related]
18. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. Patzke H; Tsai LH J Biol Chem; 2002 Mar; 277(10):8054-60. PubMed ID: 11784720 [TBL] [Abstract][Full Text] [Related]
19. Role of S-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Annamalai B; Won JS; Choi S; Singh I; Singh AK Biochem Biophys Res Commun; 2015 Feb; 458(1):214-9. PubMed ID: 25640839 [TBL] [Abstract][Full Text] [Related]
20. C-terminal truncation of GSK-3β enhances its dephosphorylation by PP2A. Jin N; Wu Y; Xu W; Gong CX; Iqbal K; Liu F FEBS Lett; 2017 Apr; 591(7):1053-1063. PubMed ID: 28267204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]