These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 17570384)

  • 1. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The preparation and characterization of 1-D orderly ZnO nanorod arrarys].
    Liu R; Zhang T; Zhao SL; Xu Z; Zhang FJ; Yuan GC; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2249-53. PubMed ID: 19123382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films.
    Dev A; Panda SK; Kar S; Chakrabarti S; Chaudhuri S
    J Phys Chem B; 2006 Jul; 110(29):14266-72. PubMed ID: 16854131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.
    Cho S; Jang JW; Lee JS; Lee KH
    Nanoscale; 2010 Oct; 2(10):2199-202. PubMed ID: 20714653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable synthesis and photoluminescence properties of ZnO nanorod and nanopin arrays.
    Yin S; Chen Y; Su Y; Jia C; Zhou Q; Li S; Xin M; Kong W; Zhang X; Lü Y
    J Nanosci Nanotechnol; 2008 Feb; 8(2):993-6. PubMed ID: 18464439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method.
    Chen YW; Liu YC; Lu SX; Xu CS; Shao CL; Wang C; Zhang JY; Lu YM; Shen DZ; Fan XW
    J Chem Phys; 2005 Oct; 123(13):134701. PubMed ID: 16223320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned fabrication of single ZnO nanorods and measurement of their optoelectrical characteristics.
    Yu CW; Lai SH; Wang TY; Lan MD; Ho MS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4377-81. PubMed ID: 19049028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method.
    Qiu J; Li X; He W; Park SJ; Kim HK; Hwang YH; Lee JH; Kim YD
    Nanotechnology; 2009 Apr; 20(15):155603. PubMed ID: 19420551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures.
    Park WI; Yoo J; Kim DW; Yi GC; Kim M
    J Phys Chem B; 2006 Feb; 110(4):1516-9. PubMed ID: 16471707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence.
    Zhang H; Yang D; Ma X; Du N; Wu J; Que D
    J Phys Chem B; 2006 Jan; 110(2):827-30. PubMed ID: 16471610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal.
    Zhang Z; Yu H; Shao X; Han M
    Chemistry; 2005 May; 11(10):3149-54. PubMed ID: 15776491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable synthesis of ZnO nanorod and prism arrays in a large area.
    Wang D; Song C
    J Phys Chem B; 2005 Jul; 109(26):12697-700. PubMed ID: 16852572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction.
    Prasad V; D'Souza C; Yadav D; Shaikh AJ; Vigneshwaran N
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Sep; 65(1):173-8. PubMed ID: 16458053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.
    Yan C; Xue D
    J Phys Chem B; 2006 Dec; 110(51):25850-5. PubMed ID: 17181231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive temperature coefficient of resistance of single ZnO nanorods.
    He GN; Huang B; Shen H
    Nanotechnology; 2011 Feb; 22(6):065304. PubMed ID: 21212482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers.
    Willander M; Nur O; Zhao QX; Yang LL; Lorenz M; Cao BQ; Zúñiga Pérez J; Czekalla C; Zimmermann G; Grundmann M; Bakin A; Behrends A; Al-Suleiman M; El-Shaer A; Che Mofor A; Postels B; Waag A; Boukos N; Travlos A; Kwack HS; Guinard J; Le Si Dang D
    Nanotechnology; 2009 Aug; 20(33):332001. PubMed ID: 19636090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.
    Cho S; Kim S; Lee KH
    J Colloid Interface Sci; 2011 Sep; 361(2):436-42. PubMed ID: 21708385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties.
    Fan LY; Yu SH
    Phys Chem Chem Phys; 2009 May; 11(19):3710-7. PubMed ID: 19421482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of ZnO nanorods for gas sensing applications using hydrothermal method.
    Nguyen CP; La PP; Trinh TT; Le TA; Bong S; Jang K; Ahn S; Yi J
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6261-5. PubMed ID: 25936100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.