These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 17570386)
1. Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis: application as MRI contrasts. Leconte Y; Veintemillas-Verdaguer S; Morales MP; Costo R; Rodríguez I; Bonville P; Bouchet-Fabre B; Herlin-Boime N J Colloid Interface Sci; 2007 Sep; 313(2):511-8. PubMed ID: 17570386 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles. Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686 [TBL] [Abstract][Full Text] [Related]
3. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Bomatí-Miguel O; Morales MP; Tartaj P; Ruiz-Cabello J; Bonville P; Santos M; Zhao X; Veintemillas-Verdaguer S Biomaterials; 2005 Oct; 26(28):5695-703. PubMed ID: 15878375 [TBL] [Abstract][Full Text] [Related]
4. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. Kim BH; Lee N; Kim H; An K; Park YI; Choi Y; Shin K; Lee Y; Kwon SG; Na HB; Park JG; Ahn TY; Kim YW; Moon WK; Choi SH; Hyeon T J Am Chem Soc; 2011 Aug; 133(32):12624-31. PubMed ID: 21744804 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Zhan J; Kolesnichenko I; Sunkara B; He J; McPherson GL; Piringer G; John VT Environ Sci Technol; 2011 Mar; 45(5):1949-54. PubMed ID: 21299241 [TBL] [Abstract][Full Text] [Related]
7. Magnetic iron oxide nanoparticles for biomedical applications. Laurent S; Bridot JL; Elst LV; Muller RN Future Med Chem; 2010 Mar; 2(3):427-49. PubMed ID: 21426176 [TBL] [Abstract][Full Text] [Related]
8. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Taboada E; Rodríguez E; Roig A; Oró J; Roch A; Muller RN Langmuir; 2007 Apr; 23(8):4583-8. PubMed ID: 17355158 [TBL] [Abstract][Full Text] [Related]
9. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Kumagai M; Imai Y; Nakamura T; Yamasaki Y; Sekino M; Ueno S; Hanaoka K; Kikuchi K; Nagano T; Kaneko E; Shimokado K; Kataoka K Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):174-81. PubMed ID: 17324561 [TBL] [Abstract][Full Text] [Related]
10. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Zeng L; Ren W; Zheng J; Cui P; Wu A Phys Chem Chem Phys; 2012 Feb; 14(8):2631-6. PubMed ID: 22273844 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of highly magnetic graphite-encapsulated FeCo nanoparticles using a hydrothermal process. Lee SJ; Cho JH; Lee C; Cho J; Kim YR; Park JK Nanotechnology; 2011 Sep; 22(37):375603. PubMed ID: 21852740 [TBL] [Abstract][Full Text] [Related]
12. Linear assemblies of magnetic nanoparticles as MRI contrast agents. Corr SA; Byrne SJ; Tekoriute R; Meledandri CJ; Brougham DF; Lynch M; Kerskens C; O'Dwyer L; Gun'ko YK J Am Chem Soc; 2008 Apr; 130(13):4214-5. PubMed ID: 18331033 [TBL] [Abstract][Full Text] [Related]
13. Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Khaydarov RA; Khaydarov RR; Gapurova O Water Res; 2010 Mar; 44(6):1927-33. PubMed ID: 20031184 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles. Boguslavsky Y; Margel S J Colloid Interface Sci; 2008 Jan; 317(1):101-14. PubMed ID: 17927999 [TBL] [Abstract][Full Text] [Related]
16. A new NMR method for determining the particle thickness in nanocomposites, using T2,H-selective X{1H} recoupling. Schmidt-Rohr K; Rawal A; Fang XW J Chem Phys; 2007 Feb; 126(5):054701. PubMed ID: 17302492 [TBL] [Abstract][Full Text] [Related]
17. Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Shieh DB; Cheng FY; Su CH; Yeh CS; Wu MT; Wu YN; Tsai CY; Wu CL; Chen DH; Chou CH Biomaterials; 2005 Dec; 26(34):7183-91. PubMed ID: 15964622 [TBL] [Abstract][Full Text] [Related]
18. The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent. Masoudi A; Madaah Hosseini HR; Shokrgozar MA; Ahmadi R; Oghabian MA Int J Pharm; 2012 Aug; 433(1-2):129-41. PubMed ID: 22579990 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Hu F; Jia Q; Li Y; Gao M Nanotechnology; 2011 Jun; 22(24):245604. PubMed ID: 21508500 [TBL] [Abstract][Full Text] [Related]
20. Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging. Platas-Iglesias C; Vander Elst L; Zhou W; Muller RN; Geraldes CF; Maschmeyer T; Peters JA Chemistry; 2002 Nov; 8(22):5121-31. PubMed ID: 12613030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]