These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 17570591)
1. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Nosonovsky M; Bhushan B Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591 [TBL] [Abstract][Full Text] [Related]
2. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Nosonovsky M Langmuir; 2007 Mar; 23(6):3157-61. PubMed ID: 17295522 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
4. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842 [TBL] [Abstract][Full Text] [Related]
5. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
6. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778 [TBL] [Abstract][Full Text] [Related]
7. Microtextured superhydrophobic surfaces: a thermodynamic analysis. Li W; Amirfazli A Adv Colloid Interface Sci; 2007 Apr; 132(2):51-68. PubMed ID: 17331459 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and superhydrophobicity of fluorinated titanium dioxide nanocoatings. Hsieh CT; Lai MH; Cheng YS J Colloid Interface Sci; 2009 Dec; 340(2):237-42. PubMed ID: 19775698 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Cha TG; Yi JW; Moon MW; Lee KR; Kim HY Langmuir; 2010 Jun; 26(11):8319-26. PubMed ID: 20151676 [TBL] [Abstract][Full Text] [Related]
11. Contact line and contact angle dynamics in superhydrophobic channels. Zhang J; Kwok DY Langmuir; 2006 May; 22(11):4998-5004. PubMed ID: 16700586 [TBL] [Abstract][Full Text] [Related]
12. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination. Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605 [TBL] [Abstract][Full Text] [Related]
13. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Cao L; Hu HH; Gao D Langmuir; 2007 Apr; 23(8):4310-4. PubMed ID: 17371061 [TBL] [Abstract][Full Text] [Related]
15. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
17. Investigating the interface of superhydrophobic surfaces in contact with water. Doshi DA; Shah PB; Singh S; Branson ED; Malanoski AP; Watkins EB; Majewski J; van Swol F; Brinker CJ Langmuir; 2005 Aug; 21(17):7805-11. PubMed ID: 16089386 [TBL] [Abstract][Full Text] [Related]
18. Optimal geometrical design for superhydrophobic surfaces: effects of a trapezoid microtexture. Li W; Cui XS; Fang GP Langmuir; 2010 Mar; 26(5):3194-202. PubMed ID: 20112932 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces. Liu HH; Zhang HY; Li W Langmuir; 2011 May; 27(10):6260-7. PubMed ID: 21495711 [TBL] [Abstract][Full Text] [Related]
20. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]