BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 17570620)

  • 1. Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids.
    Scudiero R; Trinchella F; Riggio M; Parisi E
    Gene; 2007 Aug; 397(1-2):1-11. PubMed ID: 17570620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle ferritin genes from the icefish Chionodraco rastrospinosus: comparative analysis and evolution of fish ferritins.
    Scudiero R; Esposito MG; Trinchella F
    C R Biol; 2013 Mar; 336(3):134-41. PubMed ID: 23643395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes.
    Kuhn DE; O'Brien KM; Crockett EL
    Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R649-R657. PubMed ID: 27465736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish.
    Neves JV; Wilson JM; Rodrigues PN
    Dev Comp Immunol; 2009 Jul; 33(7):848-57. PubMed ID: 19428486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and molecular analysis of a ferritin subunit from red drum (Sciaenops ocellatus).
    Hu YH; Zheng WJ; Sun L
    Fish Shellfish Immunol; 2010 Apr; 28(4):678-86. PubMed ID: 20064620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of the ATP synthase interactome in notothenioids highlights a pathway that inhibits ceruloplasmin production.
    Ebanks B; Katyal G; Lucassen M; Papetti C; Chakrabarti L
    Am J Physiol Regul Integr Comp Physiol; 2022 Aug; 323(2):R181-R192. PubMed ID: 35639858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ND6 gene "lost" and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids.
    Zhuang X; Cheng CH
    Mol Biol Evol; 2010 Jun; 27(6):1391-403. PubMed ID: 20106908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.
    Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L
    Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature.
    Carginale V; Trinchella F; Capasso C; Scudiero R; Parisi E
    Gene; 2004 Jul; 336(2):195-205. PubMed ID: 15246531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene expression of iron-related proteins during iron deficiency caused by scurvy in guinea pigs.
    Gosiewska A; Mahmoodian F; Peterkofsky B
    Arch Biochem Biophys; 1996 Jan; 325(2):295-303. PubMed ID: 8561510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic conservation of erythropoietic microRNAs (erythromiRs) in white-blooded Antarctic icefish.
    Desvignes T; Detrich HW; Postlethwait JH
    Mar Genomics; 2016 Dec; 30():27-34. PubMed ID: 27189439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis.
    Urschel MR; O'Brien KM
    J Exp Biol; 2008 Aug; 211(Pt 16):2638-46. PubMed ID: 18689417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence analysis of canine and equine ferritin H and L subunit cDNAs.
    Orino K; Miura T; Muto S; Watanabe K
    DNA Seq; 2005 Feb; 16(1):58-64. PubMed ID: 16040348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and characterization of a ferritin gene upregulated by cold stress in Chorispora bungeana.
    Zhang L; Si J; Zeng F; An L
    Biol Trace Elem Res; 2009 Jun; 128(3):269-83. PubMed ID: 19034392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crassostrea gigas ferritin: cDNA sequence analysis for two heavy chain type subunits and protein purification.
    Durand JP; Goudard F; Pieri J; Escoubas JM; Schreiber N; Cadoret JP
    Gene; 2004 Sep; 338(2):187-95. PubMed ID: 15315822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two ferritin subunits from disk abalone (Haliotis discus discus): cloning, characterization and expression analysis.
    De Zoysa M; Lee J
    Fish Shellfish Immunol; 2007 Sep; 23(3):624-35. PubMed ID: 17442591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron bioavailability in larvae yellow snapper (Lutjanus argentiventris): cloning and expression analysis of ferritin-H.
    Reyes-Becerril M; Angulo-Valadez C; Macias ME; Angulo M; Ascencio-Valle F
    Fish Shellfish Immunol; 2014 Apr; 37(2):248-55. PubMed ID: 24561126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation of the myoglobin gene among Antarctic notothenioid fishes.
    Vayda ME; Small DJ; Yuan ML; Costello L; Sidell BD
    Mol Mar Biol Biotechnol; 1997 Sep; 6(3):207-16. PubMed ID: 9284559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes.
    di Prisco G; Cocca E; Parker S; Detrich H
    Gene; 2002 Aug; 295(2):185-91. PubMed ID: 12354652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes.
    Near TJ; Parker SK; Detrich HW
    Mol Biol Evol; 2006 Nov; 23(11):2008-16. PubMed ID: 16870682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.