These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 17570707)

  • 1. Novel membrane bioreactor: Able to cope with fluctuating loads, poorly water soluble VOCs, and biomass accumulation.
    Studer M; Rudolf von Rohr P
    Biotechnol Bioeng; 2008 Jan; 99(1):38-48. PubMed ID: 17570707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological waste gas treatment with a modified rotating biological contactor. II. Effect of operating parameters on process performance and mathematical modeling.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):75-82. PubMed ID: 14505166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological waste gas treatment with a modified rotating biological contactor. Iota. Control of biofilm growth and long-term performance.
    Vinage I; von Rohr PR
    Bioprocess Biosyst Eng; 2003 Nov; 26(1):69-74. PubMed ID: 14564499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toluene removal from waste air using a flat composite membrane bioreactor.
    Jacobs P; De Bo I; Demeestere K; Verstraete W; Van Langenhove H
    Biotechnol Bioeng; 2004 Jan; 85(1):68-77. PubMed ID: 14705013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioscrubbing of waste gas-substrate absorber to avoid instability induced by inhibition kinetics.
    Oliveira TA; Livingston AG
    Biotechnol Bioeng; 2003 Dec; 84(5):552-63. PubMed ID: 14574689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of a polyethylene microporous hollow-fiber membrane biofilm reactor inoculated with Pseudomonas putida strain To1 1A for gaseous toluene removal.
    Kumar A; Yuan X; Ergas S; Dewulf J; Van Langenhove H
    Bioresour Technol; 2010 Apr; 101(7):2180-4. PubMed ID: 20031397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters.
    Yang C; Suidan MT; Zhu X; Kim BJ
    Water Sci Technol; 2003; 48(8):89-96. PubMed ID: 14682574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.
    Laurenzis A; Heits H; Wübker S; Heinze U; Friedrich C; Werner U
    Biotechnol Bioeng; 1998 Feb; 57(4):497-503. PubMed ID: 10099227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological treatment of a contaminated gaseous emission from a leather industry in a suspended-growth bioreactor.
    Carvalho MF; Duque AF; Moura SC; Amorim CL; Ferreira Jorge RM; Castro PM
    Chemosphere; 2009 Jan; 74(2):232-8. PubMed ID: 18990430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioactive foam reactor for the removal of volatile organic compounds: system performance and model development.
    Song J; Kim Y; Son Y; Khim J
    Bioprocess Biosyst Eng; 2007 Nov; 30(6):439-46. PubMed ID: 17616851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic behaviour and comparison of technologies for the removal of excess biomass in gas-phase biofilters.
    Mendoza JA; Prado OJ; Veiga MC; Kennes C
    Water Res; 2004 Jan; 38(2):404-13. PubMed ID: 14675652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a large-scale surface-aerated bioreactor for biomass production using a VOC substrate.
    Acai P; Polakovic M
    J Biotechnol; 2007 Oct; 132(2):149-55. PubMed ID: 17548122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of a mixture of volatile organic compounds (VOCs) in aqueous solutions of soluble cutting oil.
    Lalanne F; Malhautier L; Roux JC; Fanlo JL
    Bioresour Technol; 2008 Apr; 99(6):1699-707. PubMed ID: 17513105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous removal of organic matter and nitrogen compounds by combining a membrane bioreactor and a membrane biofilm reactor.
    Hasar H
    Bioresour Technol; 2009 May; 100(10):2699-705. PubMed ID: 19186053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams.
    Attaway H; Gooding CH; Schmidt MG
    J Ind Microbiol Biotechnol; 2002 May; 28(5):245-51. PubMed ID: 11986927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a composite membrane bioreactor treating toluene vapors: inocula selection, reactor performance and behavior under transient conditions.
    Kumar A; Dewulf J; Vercruyssen A; Van Langenhove H
    Bioresour Technol; 2009 Apr; 100(8):2381-7. PubMed ID: 19119003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane process for biological treatment of contaminated gas streams.
    Ergas SJ; Shumway L; Fitch MW; Neemann JJ
    Biotechnol Bioeng; 1999 May; 63(4):431-41. PubMed ID: 10099623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-liquid two-phase partitioning bioreactors for the treatment of gas-phase volatile organic carbons (VOCs) by a microbial consortium.
    Daugulis AJ; Boudreau NG
    Biotechnol Lett; 2008 Sep; 30(9):1583-7. PubMed ID: 18425429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of granular activated carbon in an immobilized membrane bioreactor for the biodegradation of phenol by Pseudomonas putida.
    Wang C; Li Y
    Biotechnol Lett; 2007 Sep; 29(9):1353-6. PubMed ID: 17646924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors.
    Montes M; Veiga MC; Kennes C
    J Biotechnol; 2012 Feb; 157(4):554-63. PubMed ID: 21807039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.