These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 17571698)
1. In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. II. Modeled effects on chemical bioaccumulation. Nichols JW; Fitzsimmons PN; Burkhard LP Environ Toxicol Chem; 2007 Jun; 26(6):1304-19. PubMed ID: 17571698 [TBL] [Abstract][Full Text] [Related]
2. In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Nichols JW; Schultz IR; Fitzsimmons PN Aquat Toxicol; 2006 Jun; 78(1):74-90. PubMed ID: 16513189 [TBL] [Abstract][Full Text] [Related]
3. Models Used to Predict Chemical Bioaccumulation in Fish from in Vitro Biotransformation Rates Require Accurate Estimates of Blood-Water Partitioning and Chemical Volume of Distribution. Saunders LJ; Nichols JW Environ Toxicol Chem; 2023 Jan; 42(1):33-45. PubMed ID: 36282023 [TBL] [Abstract][Full Text] [Related]
4. An amended Saunders LJ; Nichols JW; Arnot JA; Armitage JM; Wania F Environ Sci Process Impacts; 2023 Apr; 25(4):741-754. PubMed ID: 36876637 [TBL] [Abstract][Full Text] [Related]
5. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals. Lee YS; Lo JC; Otton SV; Moore MM; Kennedy CJ; Gobas FAPC Environ Toxicol Chem; 2017 Jul; 36(7):1934-1946. PubMed ID: 28000964 [TBL] [Abstract][Full Text] [Related]
6. Predicting the bioconcentration of fragrance ingredients by rainbow trout using measured rates of in vitro intrinsic clearance. Laue H; Gfeller H; Jenner KJ; Nichols JW; Kern S; Natsch A Environ Sci Technol; 2014 Aug; 48(16):9486-95. PubMed ID: 25058173 [TBL] [Abstract][Full Text] [Related]
7. In Vitro-In Vivo Extrapolation of Hepatic Biotransformation Data for Fish. III. An In-depth Case Study with Pyrene. Nichols JW; Fitzsimmons PN; Hoffman AD; Wong K Environ Toxicol Chem; 2023 Jul; 42(7):1501-1515. PubMed ID: 37014178 [TBL] [Abstract][Full Text] [Related]
8. Comparison of trout hepatocytes and liver S9 fractions as in vitro models for predicting hepatic clearance in fish. Fay KA; Fitzsimmons PN; Hoffman AD; Nichols JW Environ Toxicol Chem; 2017 Feb; 36(2):463-471. PubMed ID: 27487575 [TBL] [Abstract][Full Text] [Related]
9. A quantitative structure-activity relationship for predicting metabolic biotransformation rates for organic chemicals in fish. Arnot JA; Meylan W; Tunkel J; Howard PH; Mackay D; Bonnell M; Boethling RS Environ Toxicol Chem; 2009 Jun; 28(6):1168-77. PubMed ID: 19152232 [TBL] [Abstract][Full Text] [Related]
10. In vitro-in vivo extrapolation of hepatic and gastrointestinal biotransformation rates of hydrophobic chemicals in rainbow trout. Saunders LJ; Fitzsimmons PN; Nichols JW; Gobas FAPC Aquat Toxicol; 2020 Nov; 228():105629. PubMed ID: 33002683 [TBL] [Abstract][Full Text] [Related]
11. The state of in vitro science for use in bioaccumulation assessments for fish. Weisbrod AV; Sahi J; Segner H; James MO; Nichols J; Schultz I; Erhardt S; Cowan-Ellsberry C; Bonnell M; Hoeger B Environ Toxicol Chem; 2009 Jan; 28(1):86-96. PubMed ID: 18717614 [TBL] [Abstract][Full Text] [Related]
12. Protein and lipid binding parameters in rainbow trout (Oncorhynchus mykiss) blood and liver fractions to extrapolate from an in vitro metabolic degradation assay to in vivo bioaccumulation potential of hydrophobic organic chemicals. Escher BI; Cowan-Ellsberry CE; Dyer S; Embry MR; Erhardt S; Halder M; Kwon JH; Johanning K; Oosterwijk MT; Rutishauser S; Segner H; Nichols J Chem Res Toxicol; 2011 Jul; 24(7):1134-43. PubMed ID: 21604782 [TBL] [Abstract][Full Text] [Related]
13. In vitro biotransformation of surfactants in fish. Part II--Alcohol ethoxylate (C16EO8) and alcohol ethoxylate sulfate (C14EO2S) to estimate bioconcentration potential. Dyer SD; Bernhard MJ; Cowan-Ellsberry C; Perdu-Durand E; Demmerle S; Cravedi JP Chemosphere; 2009 Aug; 76(7):989-98. PubMed ID: 19433333 [TBL] [Abstract][Full Text] [Related]
14. Can poly-parameter linear-free energy relationships (pp-LFERs) improve modelling bioaccumulation in fish? Zhao S; Jones KC; Sweetman AJ Chemosphere; 2018 Jan; 191():235-244. PubMed ID: 29035795 [TBL] [Abstract][Full Text] [Related]
15. A weight-of-evidence approach for the bioaccumulation assessment of triclosan in aquatic species. Arnot JA; Pawlowski S; Champ S Sci Total Environ; 2018 Mar; 618():1506-1518. PubMed ID: 29029804 [TBL] [Abstract][Full Text] [Related]
16. Examining Uncertainty in In Vitro-In Vivo Extrapolation Applied in Fish Bioconcentration Models. Laue H; Hostettler L; Badertscher RP; Jenner KJ; Sanders G; Arnot JA; Natsch A Environ Sci Technol; 2020 Aug; 54(15):9483-9494. PubMed ID: 32633948 [TBL] [Abstract][Full Text] [Related]
17. Relevance of desorption kinetics and permeability for in vitro-based predictions of hepatic clearance in fish. Krause S; Goss KU Aquat Toxicol; 2021 Jun; 235():105825. PubMed ID: 33857871 [TBL] [Abstract][Full Text] [Related]
18. Investigating the bioaccumulation potential of anionic organic compounds using a permanent rainbow trout liver cell line. Balk F; Hollender J; Schirmer K Environ Int; 2023 Apr; 174():107798. PubMed ID: 36965398 [TBL] [Abstract][Full Text] [Related]
19. Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates. Cowan-Ellsberry CE; Dyer SD; Erhardt S; Bernhard MJ; Roe AL; Dowty ME; Weisbrod AV Chemosphere; 2008 Feb; 70(10):1804-17. PubMed ID: 17904615 [TBL] [Abstract][Full Text] [Related]
20. Estimating metabolic biotransformation rates in fish from laboratory data. Arnot JA; Mackay D; Bonnell M Environ Toxicol Chem; 2008 Feb; 27(2):341-51. PubMed ID: 18348640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]