BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17571789)

  • 21. [Conflict: induction-inhibition of transgene bacteria luminescence in studying expression of lux-genes].
    Lesniak DV; Popova LIu
    Biofizika; 2002; 47(6):1059-63. PubMed ID: 12500568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Naphthalene oxidation by a Pseudomonas putida strain carrying a mutant plasmid].
    Skriabin GK; Starovoĭtov II; Borisoglebskaia AN; Borodin AM
    Mikrobiologiia; 1978; 47(2):273-7. PubMed ID: 661635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a bioluminescent catabolic reporter bacterium.
    Heitzer A; Webb OF; Thonnard JE; Sayler GS
    Appl Environ Microbiol; 1992 Jun; 58(6):1839-46. PubMed ID: 16348717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial oxidation of naphthalene. I. Factors concerning salicylate accumulation.
    KLAUSMEIER RE; STRAWINSKI RJ
    J Bacteriol; 1957 Apr; 73(4):461-4. PubMed ID: 13428675
    [No Abstract]   [Full Text] [Related]  

  • 25. Pseudomonas fluorescens ompW: plasmid localization and requirement for naphthalene uptake.
    Neher TM; Lueking DR
    Can J Microbiol; 2009 May; 55(5):553-63. PubMed ID: 19483784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Obtaining of bacterial bioluminescent strain Protobacterium phosphoreum B7071 (lux+) for the determination of zinc ion concentration].
    Gruzina TG; Dybkova SN; Chekhovskaia TP; Vember VV; Zadorozhniaia AM; Ul'berg ZR
    Ukr Biokhim Zh (1999); 2006; 78(1):143-8. PubMed ID: 17147278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1.
    Kang YS; Lee Y; Jung H; Jeon CO; Madsen EL; Park W
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3246-3254. PubMed ID: 17906124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Diversity of genetic systems responsible for biodegradation of naphthalene in Pseudomonas fluorescens strains].
    Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(1):70-8. PubMed ID: 15835781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioavailability and toxicity of soil particle-associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensor strains.
    Brandt KK; Holm PE; Nybroe O
    Environ Toxicol Chem; 2006 Jul; 25(7):1738-41. PubMed ID: 16833132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils.
    Bundy JG; Campbell CD; Paton GI
    J Environ Monit; 2001 Aug; 3(4):404-10. PubMed ID: 11523441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Formation of structured communities by natural and transgenic naphthalene-consuming bacteria].
    Mogil'naia OA; Krivomazova ES; Kargatova TV; Lobova TI; Popova LIu
    Prikl Biokhim Mikrobiol; 2005; 41(1):72-8. PubMed ID: 15810736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated CMOS microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit.
    Simpson ML; Sayler GS; Patterson G; Nivens DE; Bolton EK; Rochelle JM; Arnott JC; Applegate BM; Ripp S; Guillorn MA
    Sens Actuators B Chem; 2001 Jan; 72(2):134-40. PubMed ID: 12192685
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism.
    Samanta SK; Bhushan B; Jain RK
    Appl Microbiol Biotechnol; 2001 May; 55(5):627-31. PubMed ID: 11414331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical-specific continuous biomonitoring using a recombinant bioluminescent bacterium DNT5 (nagR-nagAa::luxCDABE).
    Lee JH; Mitchell RJ; Gu MB
    J Biotechnol; 2007 Sep; 131(3):330-4. PubMed ID: 17716769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymes of naphthalene metabolism by Pseudomonas fluorescens 26K strain.
    Leneva NA; Kolomytseva MP; Baskunov BP; Golovleva LA
    Biochemistry (Mosc); 2010 May; 75(5):562-9. PubMed ID: 20632934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioluminescent quantum dots.
    Evanko D
    Nat Methods; 2006 Apr; 3(4):240-1. PubMed ID: 16578927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetics of naphthalene catabolism in pseudomonads.
    Yen KM; Serdar CM
    Crit Rev Microbiol; 1988; 15(3):247-68. PubMed ID: 3288442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced production of longer side-chain polyhydroxyalkanoic acid with omega-aromatic group substitution in phaZ-disrupted Pseudomonas fluorescens BM07 mutant through unrelated carbon source cometabolism and salicylic acid beta-oxidation inhibition.
    Choi MH; Xu J; Rho JK; Zhao XP; Yoon SC
    Bioresour Technol; 2010 Jun; 101(12):4540-8. PubMed ID: 20153638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dialysis fermentation. I. Enhanced production of salicylic acid from naphthalene by Pseudomonas fluorescens.
    Abbott BJ; Gerhardt P
    Biotechnol Bioeng; 1970 Jul; 12(4):577-82 passim. PubMed ID: 5482894
    [No Abstract]   [Full Text] [Related]  

  • 40. [Alternative route of catabolism of naphthalene by Pseudomonas fluorescens].
    Skriabin GK; Starovoĭtov II
    Dokl Akad Nauk SSSR; 1975; 221(2):493-5. PubMed ID: 804395
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.