These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 17572018)
1. A pseudo-boolean framework for computing rearrangement distances between genomes with duplicates. Angibaud S; Fertin G; Rusu I; Vialette S J Comput Biol; 2007 May; 14(4):379-93. PubMed ID: 17572018 [TBL] [Abstract][Full Text] [Related]
2. Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. Angibaud S; Fertin G; Rusu I; Thévenin A; Vialette S J Comput Biol; 2008 Oct; 15(8):1093-115. PubMed ID: 18774903 [TBL] [Abstract][Full Text] [Related]
3. Computing the summed adjacency disruption number between two genomes with duplicate genes. Delgado J; Lynce I; Manquinho V J Comput Biol; 2010 Sep; 17(9):1243-65. PubMed ID: 20874407 [TBL] [Abstract][Full Text] [Related]
4. Comparing genomes with duplications: a computational complexity point of view. Blin G; Chauve C; Fertin G; Rizzi R; Vialette S IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):523-34. PubMed ID: 17975264 [TBL] [Abstract][Full Text] [Related]
5. Approaching the One-Sided Exemplar Adjacency Number Problem. Qingge L; Smith K; Jungst S; Wang B; Yang Q; Zhu B IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1946-1954. PubMed ID: 31056506 [TBL] [Abstract][Full Text] [Related]
6. On Computing Breakpoint Distances for Genomes with Duplicate Genes. Shao M; Moret BME J Comput Biol; 2017 Jun; 24(6):571-580. PubMed ID: 27788022 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of ancestral genomic sequences using likelihood. Elias I; Tuller T J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016 [TBL] [Abstract][Full Text] [Related]
9. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes. Shao M; Lin Y; Moret BM J Comput Biol; 2015 May; 22(5):425-35. PubMed ID: 25517208 [TBL] [Abstract][Full Text] [Related]
13. Divide-and-conquer approach for the exemplar breakpoint distance. Nguyen CT; Tay YC; Zhang L Bioinformatics; 2005 May; 21(10):2171-6. PubMed ID: 15713729 [TBL] [Abstract][Full Text] [Related]
14. MSOAR: a high-throughput ortholog assignment system based on genome rearrangement. Fu Z; Chen X; Vacic V; Nan P; Zhong Y; Jiang T J Comput Biol; 2007 Nov; 14(9):1160-75. PubMed ID: 17990975 [TBL] [Abstract][Full Text] [Related]
15. GATA: a graphic alignment tool for comparative sequence analysis. Nix DA; Eisen MB BMC Bioinformatics; 2005 Jan; 6():9. PubMed ID: 15655071 [TBL] [Abstract][Full Text] [Related]
16. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes. Xu Y; Glansdorff N; Labedan B BMC Genomics; 2006 Jan; 7():4. PubMed ID: 16409639 [TBL] [Abstract][Full Text] [Related]
17. Heuristics for Genome Rearrangement Distance With Replicated Genes. Siqueira G; Brito KL; Dias U; Dias Z IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2094-2108. PubMed ID: 34232886 [TBL] [Abstract][Full Text] [Related]
19. Error Tree: A Tree Structure for Hamming and Edit Distances and Wildcards Matching. Al-Okaily A J Comput Biol; 2015 Dec; 22(12):1118-28. PubMed ID: 26402070 [TBL] [Abstract][Full Text] [Related]
20. Overlapping genes as rare genomic markers: the phylogeny of gamma-Proteobacteria as a case study. Luo Y; Fu C; Zhang DY; Lin K Trends Genet; 2006 Nov; 22(11):593-6. PubMed ID: 16973237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]