BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17572091)

  • 1. Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by beta-cyclodextrin derivatives.
    Karginov VA; Nestorovich EM; Schmidtmann F; Robinson TM; Yohannes A; Fahmi NE; Bezrukov SM; Hecht SM
    Bioorg Med Chem; 2007 Aug; 15(16):5424-31. PubMed ID: 17572091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry requirements for effective blocking of pore-forming toxins: comparative study with alpha-, beta-, and gamma-cyclodextrin derivatives.
    Yannakopoulou K; Jicsinszky L; Aggelidou C; Mourtzis N; Robinson TM; Yohannes A; Nestorovich EM; Bezrukov SM; Karginov VA
    Antimicrob Agents Chemother; 2011 Jul; 55(7):3594-7. PubMed ID: 21555769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design.
    Karginov VA; Nestorovich EM; Moayeri M; Leppla SH; Bezrukov SM
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15075-80. PubMed ID: 16214885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the hemolytic activity caused by Staphylococcus aureus alpha-hemolysin through isatin-Schiff copper(II) complexes.
    Melo MC; Teixeira LR; Pol-Fachin L; Rodrigues CG
    FEMS Microbiol Lett; 2016 Jan; 363(1):fnv207. PubMed ID: 26519261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-cyclodextrin derivatives that inhibit anthrax lethal toxin.
    Karginov VA; Yohannes A; Robinson TM; Fahmi NE; Alibek K; Hecht SM
    Bioorg Med Chem; 2006 Jan; 14(1):33-40. PubMed ID: 16169738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo efficacy of beta-cyclodextrin derivatives against anthrax lethal toxin.
    Moayeri M; Robinson TM; Leppla SH; Karginov VA
    Antimicrob Agents Chemother; 2008 Jun; 52(6):2239-41. PubMed ID: 18378717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Search for cyclodextrin-based inhibitors of anthrax toxins: synthesis, structural features, and relative activities.
    Karginov VA; Nestorovich EM; Yohannes A; Robinson TM; Fahmi NE; Schmidtmann F; Hecht SM; Bezrukov SM
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3740-53. PubMed ID: 16982795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for pore-forming mechanism of staphylococcal α-hemolysin.
    Sugawara T; Yamashita D; Kato K; Peng Z; Ueda J; Kaneko J; Kamio Y; Tanaka Y; Yao M
    Toxicon; 2015 Dec; 108():226-31. PubMed ID: 26428390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Clostridium perfringens epsilon toxin by β-cyclodextrin derivatives.
    Robinson TM; Jicsinszky L; Karginov AV; Karginov VA
    Int J Pharm; 2017 Oct; 531(2):714-717. PubMed ID: 28750897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry complementarity-guided design of anthrax toxin inhibitors based on β-cyclodextrin: Synthesis and relative activities of face-selective functionalized polycationic clusters.
    Díaz-Moscoso A; Méndez-Ardoy A; Ortega-Caballero F; Benito JM; Ortiz Mellet C; Defaye J; Robinson TM; Yohannes A; Karginov VA; García Fernández JM
    ChemMedChem; 2011 Jan; 6(1):181-92. PubMed ID: 21140396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention and treatment of Staphylococcus aureus pneumonia with a beta-cyclodextrin derivative.
    Ragle BE; Karginov VA; Bubeck Wardenburg J
    Antimicrob Agents Chemother; 2010 Jan; 54(1):298-304. PubMed ID: 19805564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors.
    Popova TG; Millis B; Bradburne C; Nazarenko S; Bailey C; Chandhoke V; Popov SG
    BMC Microbiol; 2006 Feb; 6():8. PubMed ID: 16464252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indolo[3,2-b]quinoline Derivatives Suppressed the Hemolytic Activity of Beta-Pore Forming Toxins, Aerolysin-Like Hemolysin Produced by Aeromonas sobria and Alpha-Hemolysin Produced by Staphylococcus aureus.
    Takahashi E; Fujinami C; Kuroda T; Takeuchi Y; Miyoshi S; Arimoto S; Negishi T; Okamoto K
    Biol Pharm Bull; 2016; 39(1):114-20. PubMed ID: 26725434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical inhibition of alpha-toxin, a key corneal virulence factor of Staphylococcus aureus.
    McCormick CC; Caballero AR; Balzli CL; Tang A; O'Callaghan RJ
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2848-54. PubMed ID: 19136695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morin hydrate attenuates Staphylococcus aureus virulence by inhibiting the self-assembly of α-hemolysin.
    Wang J; Zhou X; Liu S; Li G; Shi L; Dong J; Li W; Deng X; Niu X
    J Appl Microbiol; 2015 Mar; 118(3):753-63. PubMed ID: 25564958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and potency of cyclodextrin-lipid inhibitors of Staphylococcus aureus α-toxin.
    Weeks AC; Balzli CL; Caballero A; Tang A; O'Callaghan R
    Curr Eye Res; 2012 Feb; 37(2):87-93. PubMed ID: 22050601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cluster-forming property correlated with hemolytic activity by staphylococcal γ-hemolysin transmembrane pores.
    Tomita N; Abe K; Kamio Y; Ohta M
    FEBS Lett; 2011 Nov; 585(21):3452-6. PubMed ID: 22001207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus.
    Menestrina G; Dalla Serra M; Comai M; Coraiola M; Viero G; Werner S; Colin DA; Monteil H; Prévost G
    FEBS Lett; 2003 Sep; 552(1):54-60. PubMed ID: 12972152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification.
    Walker B; Bayley H
    J Biol Chem; 1995 Sep; 270(39):23065-71. PubMed ID: 7559447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes.
    Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 2004 May; 68(5):981-1003. PubMed ID: 15170101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.