These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17572748)

  • 1. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.
    Hart RC; Herring GC; Balla RJ
    Opt Lett; 2007 Jun; 32(12):1689-91. PubMed ID: 17572748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam misalignments and fluid velocities in laser-induced thermal acoustics.
    Schlamp S; Cummings EB; Hornung HG
    Appl Opt; 1999 Sep; 38(27):5724-33. PubMed ID: 18324083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced thermal-acoustic velocimetry with heterodyne detection.
    Schlamp S; Cummings EB; Sobota TH
    Opt Lett; 2000 Feb; 25(4):224-6. PubMed ID: 18059836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonresonant referenced laser-induced thermal acoustics thermometry in air.
    Hart RC; Balla RJ; Herring GC
    Appl Opt; 1999 Jan; 38(3):577-84. PubMed ID: 18305650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common-path heterodyne laser-induced thermal acoustics for seedless laser velocimetry.
    Hart RC; Herring GC; Balla RJ
    Opt Lett; 2002 May; 27(9):710-2. PubMed ID: 18007907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical measurement of the speed of sound in air over the temperature range 300-650 K.
    Hart RC; Balla RJ; Herring GC
    J Acoust Soc Am; 2000 Oct; 108(4):1946-8. PubMed ID: 11051522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced thermal acoustics (LITA) signals from finite beams.
    Cummings EB; Leyva IA; Hornung HG
    Appl Opt; 1995 Jun; 34(18):3290-302. PubMed ID: 21052135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence.
    Hiller B; Hanson RK
    Appl Opt; 1988 Jan; 27(1):33-48. PubMed ID: 20523544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 10 kHz laser-induced schliere anemometry for velocity, Mach number, and static temperature measurements in supersonic flows.
    Lester L; Gragston M
    Appl Opt; 2021 Oct; 60(28):8644-8650. PubMed ID: 34613089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced thermal acoustics: simple accurate gas measurements.
    Cummings EB
    Opt Lett; 1994 Sep; 19(17):1361-3. PubMed ID: 19855521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-pulse measurements of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy.
    Fletcher DG; McKenzie RL
    Opt Lett; 1992 Nov; 17(22):1614-6. PubMed ID: 19798263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics.
    Schlamp S; Hornung HG; Sobota TH; Cummings EB
    Appl Opt; 2000 Oct; 39(30):5477-81. PubMed ID: 18354543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics.
    Cummings EB; Hornung HG; Brown MS; Debarber PA
    Opt Lett; 1995 Jul; 20(14):1577-9. PubMed ID: 19862088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous velocimetry and thermometry of air by use of nonresonant heterodyned laser-induced thermal acoustics.
    Hart RC; Balla RJ; Herring GC
    Appl Opt; 2001 Feb; 40(6):965-8. PubMed ID: 18357080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy.
    Paci P; Zvinevich Y; Tanimura S; Wyslouzil BE; Zahniser M; Shorter J; Nelson D; McManus B
    J Chem Phys; 2004 Nov; 121(20):9964-70. PubMed ID: 15549871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal grating velocimetry.
    Walker DJ; Williams RB; Ewart P
    Opt Lett; 1998 Aug; 23(16):1316-8. PubMed ID: 18087510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planar Rayleigh scattering results in helium-air mixing experiments in a Mach-6 wind tunnel.
    Shirinzadeh B; Hillard ME; Balla RJ; Waitz IA; Anders JB; Exton RJ
    Appl Opt; 1992 Oct; 31(30):6529-34. PubMed ID: 20733871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced schliere anemometry in a Mach 6 flow with collinear light entry.
    Chism JR; Gragston M; Hagen B; Leicht J; Riley ZB
    Appl Opt; 2022 Apr; 61(11):3070-3076. PubMed ID: 35471281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossed-beam intermodulated fluorescence spectroscopy as a spatially resolved temperature diagnostic for supersonic nozzles.
    Phillips GT; Perram GP
    Appl Opt; 2009 Sep; 48(26):4917-21. PubMed ID: 19745854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.