These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17573089)

  • 1. Predictions of the modified Biot-Attenborough model for the dependence of phase velocity on porosity in cancellous bone.
    Lee KI; Humphrey VF; Leighton TG; Yoon SW
    Ultrasonics; 2007 Nov; 46(4):323-30. PubMed ID: 17573089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
    Lee KI; Hughes ER; Humphrey VF; Leighton TG; Choi MJ
    Phys Med Biol; 2007 Jan; 52(1):59-73. PubMed ID: 17183128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of acoustic characteristics predicted by Biot's theory and the modified Biot-Attenborough model in cancellous bone.
    Lee KI; Yoon SW
    J Biomech; 2006; 39(2):364-8. PubMed ID: 16321640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the biot model to ultrasound in bone: direct problem.
    Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of measurements of phase velocity in human calcaneus to Biot theory.
    Wear KA; Laib A; Stuber AP; Reynolds JC
    J Acoust Soc Am; 2005 May; 117(5):3319-24. PubMed ID: 15957798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic diagnosis for porous medium with circular cylindrical pores.
    Roh HS; Yoon SW
    J Acoust Soc Am; 2004 Mar; 115(3):1114-24. PubMed ID: 15058332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem.
    Sebaa N; Fellah ZE; Fellah M; Ogam E; Wirgin A; Mitri FG; Depollier C; Lauriks W
    J Acoust Soc Am; 2006 Oct; 120(4):1816-24. PubMed ID: 17069280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone.
    Hughes ER; Leighton TG; White PR; Petley GW
    J Acoust Soc Am; 2007 Jan; 121(1):568-74. PubMed ID: 17297810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the Biot model to ultrasound in bone: inverse problem.
    Sebaa N; Fellah ZA; Fellah M; Ogam E; Mitri FG; Depollier C; Lauriks W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1516-23. PubMed ID: 18986941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.
    Wear KA
    J Acoust Soc Am; 2013 Apr; 133(4):2490-501. PubMed ID: 23556613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering of ultrasound in cancellous bone: predictions from a theoretical model.
    Nicholson PH; Strelitzki R; Cleveland RO; Bouxsein ML
    J Biomech; 2000 Apr; 33(4):503-6. PubMed ID: 10768401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biot theory: a review of its application to ultrasound propagation through cancellous bone.
    Haire TJ; Langton CM
    Bone; 1999 Apr; 24(4):291-5. PubMed ID: 10221540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.