These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17573350)

  • 61. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration.
    Orsel M; Eulenburg K; Krapp A; Daniel-Vedele F
    Planta; 2004 Aug; 219(4):714-21. PubMed ID: 15107992
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification and molecular characterization of Medicago truncatula NRT2 and NAR2 families.
    Pellizzaro A; Clochard T; Planchet E; Limami AM; Morère-Le Paven MC
    Physiol Plant; 2015 Jun; 154(2):256-69. PubMed ID: 25430977
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A reevaluation of the role of Arabidopsis NRT1.1 in high-affinity nitrate transport.
    Glass AD; Kotur Z
    Plant Physiol; 2013 Nov; 163(3):1103-6. PubMed ID: 24089435
    [No Abstract]   [Full Text] [Related]  

  • 64. Protein Phosphorylation Orchestrates Acclimations of Arabidopsis Plants to Environmental pH.
    Jain D; Schmidt W
    Mol Cell Proteomics; 2024 Jan; 23(1):100685. PubMed ID: 38000714
    [TBL] [Abstract][Full Text] [Related]  

  • 65. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana.
    Zhong L; Chen D; Min D; Li W; Xu Z; Zhou Y; Li L; Chen M; Ma Y
    Biochem Biophys Res Commun; 2015 Feb; 457(3):433-9. PubMed ID: 25596127
    [TBL] [Abstract][Full Text] [Related]  

  • 66. NAR2.1/NRT2.1 functional interaction with NO3(-) and H(+) fluxes in high-affinity nitrate transport in maize root regions.
    Lupini A; Mercati F; Araniti F; Miller AJ; Sunseri F; Abenavoli MR
    Plant Physiol Biochem; 2016 May; 102():107-14. PubMed ID: 26926793
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nitrate transport and signalling in Arabidopsis.
    Krapp A; David LC; Chardin C; Girin T; Marmagne A; Leprince AS; Chaillou S; Ferrario-Méry S; Meyer C; Daniel-Vedele F
    J Exp Bot; 2014 Mar; 65(3):789-98. PubMed ID: 24532451
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display.
    Filleur S; Daniel-Vedele F
    Planta; 1999 Jan; 207(3):461-9. PubMed ID: 9951738
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is regulated by auxin in both shoots and roots.
    Guo FQ; Wang R; Crawford NM
    J Exp Bot; 2002 Apr; 53(370):835-44. PubMed ID: 11912226
    [TBL] [Abstract][Full Text] [Related]  

  • 70. On the roots of nitrogen uptake.
    Rahikainen M; Kangasjärvi S
    New Phytol; 2020 Nov; 228(3):802-804. PubMed ID: 32767375
    [No Abstract]   [Full Text] [Related]  

  • 71. The Beneficial Fungus
    Svietlova N; Reichelt M; Zhyr L; Majumder A; Scholz SS; Grabe V; Krapp A; Oelmüller R; Mithöfer A
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003319
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots.
    Yoshimoto N; Takahashi H; Smith FW; Yamaya T; Saito K
    Plant J; 2002 Feb; 29(4):465-73. PubMed ID: 11846879
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake.
    Huang NC; Liu KH; Lo HJ; Tsay YF
    Plant Cell; 1999 Aug; 11(8):1381-92. PubMed ID: 10449574
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nitrate transporter 1.1 alleviates lead toxicity in Arabidopsis by preventing rhizosphere acidification.
    Zhu J; Fang XZ; Dai YJ; Zhu YX; Chen HS; Lin XY; Jin CW
    J Exp Bot; 2019 Nov; 70(21):6363-6374. PubMed ID: 31414122
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gene structure and expression of the high-affinity nitrate transport system in rice roots.
    Cai C; Wang JY; Zhu YG; Shen QR; Li B; Tong YP; Li ZS
    J Integr Plant Biol; 2008 Apr; 50(4):443-51. PubMed ID: 18713378
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Identification and characterization of the NPF, NRT2 and NRT3 in spinach.
    Wang X; Cai X; Xu C; Wang Q
    Plant Physiol Biochem; 2021 Jan; 158():297-307. PubMed ID: 33243709
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nitrate-Dependent Control of Shoot K Homeostasis by the Nitrate Transporter1/Peptide Transporter Family Member NPF7.3/NRT1.5 and the Stelar K+ Outward Rectifier SKOR in Arabidopsis.
    Drechsler N; Zheng Y; Bohner A; Nobmann B; von Wirén N; Kunze R; Rausch C
    Plant Physiol; 2015 Dec; 169(4):2832-47. PubMed ID: 26508776
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition.
    Ohkubo Y; Tanaka M; Tabata R; Ogawa-Ohnishi M; Matsubayashi Y
    Nat Plants; 2017 Mar; 3():17029. PubMed ID: 28319056
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants.
    Wang R; Crawford NM
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):9297-301. PubMed ID: 8799195
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Expression of the cassava nitrate transporter
    Zou L; Qi D; Sun J; Zheng X; Peng M
    J Genet; 2019 Sep; 98():. PubMed ID: 31544785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.