BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17573472)

  • 1. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens.
    Singh R; Mailloux RJ; Puiseux-Dao S; Appanna VD
    J Bacteriol; 2007 Sep; 189(18):6665-75. PubMed ID: 17573472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic adaptation and NADPH homeostasis evoked by a sulfur-deficient environment in Pseudomonas fluorescens.
    Legendre F; Tharmalingam S; Bley AM; MacLean A; Appanna VD
    Antonie Van Leeuwenhoek; 2020 May; 113(5):605-616. PubMed ID: 31828449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.
    Singh R; Lemire J; Mailloux RJ; Appanna VD
    PLoS One; 2008 Jul; 3(7):e2682. PubMed ID: 18628998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic networks to combat oxidative stress in Pseudomonas fluorescens.
    Mailloux RJ; Lemire J; Appanna VD
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):433-42. PubMed ID: 21153706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens.
    Alhasawi A; Castonguay Z; Appanna ND; Auger C; Appanna VD
    Microbiol Res; 2015 Feb; 171():26-31. PubMed ID: 25644949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity.
    Lemire J; Kumar P; Mailloux R; Cossar K; Appanna VD
    J Basic Microbiol; 2008 Aug; 48(4):252-9. PubMed ID: 18720501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.
    Lemire J; Milandu Y; Auger C; Bignucolo A; Appanna VP; Appanna VD
    FEMS Microbiol Lett; 2010 Aug; 309(2):170-7. PubMed ID: 20597986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H).
    Kawai S; Murata K
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):919-30. PubMed ID: 18391451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells.
    Gray JP; Alavian KN; Jonas EA; Heart EA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(2):E191-9. PubMed ID: 22550069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress.
    Grose JH; Joss L; Velick SF; Roth JR
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7601-6. PubMed ID: 16682646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tricarboxylic acid cycle, an ancient metabolic network with a novel twist.
    Mailloux RJ; Bériault R; Lemire J; Singh R; Chénier DR; Hamel RD; Appanna VD
    PLoS One; 2007 Aug; 2(8):e690. PubMed ID: 17668068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production.
    Singh R; Beriault R; Middaugh J; Hamel R; Chenier D; Appanna VD; Kalyuzhnyi S
    Extremophiles; 2005 Oct; 9(5):367-73. PubMed ID: 15970995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct stimulation of NADP
    Hoxhaj G; Ben-Sahra I; Lockwood SE; Timson RC; Byles V; Henning GT; Gao P; Selfors LM; Asara JM; Manning BD
    Science; 2019 Mar; 363(6431):1088-1092. PubMed ID: 30846598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: implications for the bioremediation of metal pollutants.
    Alhasawi A; Costanzi J; Auger C; Appanna ND; Appanna VD
    J Biotechnol; 2015 Apr; 200():38-43. PubMed ID: 25724118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic manipulation by
    MacLean A; Bley AM; Appanna VP; Appanna VD
    J Med Microbiol; 2020 Mar; 69(3):339-346. PubMed ID: 31961786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD+ Kinase as a Therapeutic Target in Cancer.
    Tedeschi PM; Bansal N; Kerrigan JE; Abali EE; Scotto KW; Bertino JR
    Clin Cancer Res; 2016 Nov; 22(21):5189-5195. PubMed ID: 27582489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F; Kawai S; Mori S; Kono E; Murata K
    FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():43-51. PubMed ID: 28108222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridine nucleotide regulation of cardiac intermediary metabolism.
    Ussher JR; Jaswal JS; Lopaschuk GD
    Circ Res; 2012 Aug; 111(5):628-41. PubMed ID: 22904042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen peroxide stress provokes a metabolic reprogramming in Pseudomonas fluorescens: enhanced production of pyruvate.
    Bignucolo A; Appanna VP; Thomas SC; Auger C; Han S; Omri A; Appanna VD
    J Biotechnol; 2013 Sep; 167(3):309-15. PubMed ID: 23871654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.