These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 17573690)
1. Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Yang C; Cai N; Dong M; Jiang H; Li J; Qiao C; Mulchandani A; Chen W Biotechnol Bioeng; 2008 Jan; 99(1):30-7. PubMed ID: 17573690 [TBL] [Abstract][Full Text] [Related]
2. Anchorage of GFP fusion on the cell surface of Pseudomonas putida. Yuan Y; Yang C; Song C; Jiang H; Mulchandani A; Qiao C Biodegradation; 2011 Feb; 22(1):51-61. PubMed ID: 20556484 [TBL] [Abstract][Full Text] [Related]
3. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. Lei Y; Mulchandani A; Chen W Biotechnol Prog; 2005; 21(3):678-81. PubMed ID: 15932242 [TBL] [Abstract][Full Text] [Related]
4. Construction of a genetically engineered microorganism that simultaneously degrades organochlorine and organophosphate pesticides. Yang J; Liu R; Song W; Yang Y; Cui F; Qiao C Appl Biochem Biotechnol; 2012 Feb; 166(3):590-8. PubMed ID: 22139730 [TBL] [Abstract][Full Text] [Related]
5. Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. Shimazu M; Nguyen A; Mulchandani A; Chen W Biotechnol Prog; 2003; 19(5):1612-4. PubMed ID: 14524726 [TBL] [Abstract][Full Text] [Related]
6. Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates. Liu R; Yang C; Xu Y; Xu P; Jiang H; Qiao C J Agric Food Chem; 2013 Aug; 61(32):7810-6. PubMed ID: 23875606 [TBL] [Abstract][Full Text] [Related]
7. Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. Yang C; Song C; Mulchandani A; Qiao C J Agric Food Chem; 2010 Jun; 58(11):6762-6. PubMed ID: 20455565 [TBL] [Abstract][Full Text] [Related]
8. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates. Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452 [TBL] [Abstract][Full Text] [Related]
9. Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a coculture with organophosphate-mineralizing activity . Yang C; Zhu Y; Yang J; Liu Z; Qiao C; Mulchandani A; Chen W Appl Environ Microbiol; 2008 Dec; 74(24):7733-9. PubMed ID: 18952884 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. Liu Z; Yang C; Jiang H; Mulchandani A; Chen W; Qiao C J Agric Food Chem; 2009 Jul; 57(14):6171-7. PubMed ID: 19548671 [TBL] [Abstract][Full Text] [Related]
11. Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Liu H; Zhang JJ; Wang SJ; Zhang XE; Zhou NY Biochem Biophys Res Commun; 2005 Sep; 334(4):1107-14. PubMed ID: 16039612 [TBL] [Abstract][Full Text] [Related]
12. Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. Lei Y; Mulchandani P; Chen W; Mulchandani A J Agric Food Chem; 2005 Feb; 53(3):524-7. PubMed ID: 15686397 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous degradation of organophosphate and organochlorine pesticides by Sphingobium japonicum UT26 with surface-displayed organophosphorus hydrolase. Cao X; Yang C; Liu R; Li Q; Zhang W; Liu J; Song C; Qiao C; Mulchandani A Biodegradation; 2013 Apr; 24(2):295-303. PubMed ID: 22910813 [TBL] [Abstract][Full Text] [Related]
14. Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Lei Y; Mulchandani P; Chen W; Mulchandani A Appl Biochem Biotechnol; 2007 Mar; 136(3):243-50. PubMed ID: 17625231 [TBL] [Abstract][Full Text] [Related]
15. Improved phosphate biosorption by bacterial surface display of phosphate-binding protein utilizing ice nucleation protein. Li Q; Yu Z; Shao X; He J; Li L FEMS Microbiol Lett; 2009 Oct; 299(1):44-52. PubMed ID: 19686343 [TBL] [Abstract][Full Text] [Related]
16. Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. Zhang H; Yang C; Li C; Li L; Zhao Q; Qiao C J Agric Food Chem; 2008 Sep; 56(17):7897-902. PubMed ID: 18693742 [TBL] [Abstract][Full Text] [Related]
17. Construction of a green fluorescent protein (GFP)-marked multifunctional pesticide-degrading bacterium for simultaneous degradation of organophosphates and γ-hexachlorocyclohexane. Yang C; Liu R; Yuan Y; Liu J; Cao X; Qiao C; Song C J Agric Food Chem; 2013 Feb; 61(6):1328-34. PubMed ID: 23339411 [TBL] [Abstract][Full Text] [Related]
18. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Shimazu M; Mulchandani A; Chen W Biotechnol Prog; 2001; 17(1):76-80. PubMed ID: 11170483 [TBL] [Abstract][Full Text] [Related]
19. Bioremediation of organophosphorus pesticides by surface-expressed carboxylesterase from mosquito on Escherichia coli. Zhang J; Lan W; Qiao C; Jiang H; Mulchandani A; Chen W Biotechnol Prog; 2004; 20(5):1567-71. PubMed ID: 15458345 [TBL] [Abstract][Full Text] [Related]
20. Surface display of monkey metallothionein α tandem repeats and EGFP fusion protein on Pseudomonas putida X4 for biosorption and detection of cadmium. He X; Chen W; Huang Q Appl Microbiol Biotechnol; 2012 Sep; 95(6):1605-13. PubMed ID: 22205441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]