These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Potentiation and cellular phenotypes of the insecticidal Toxin complexes of Photorhabdus bacteria. Waterfield N; Hares M; Yang G; Dowling A; ffrench-Constant R Cell Microbiol; 2005 Mar; 7(3):373-82. PubMed ID: 15679840 [TBL] [Abstract][Full Text] [Related]
5. Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Erickson DL; Waterfield NR; Vadyvaloo V; Long D; Fischer ER; Ffrench-Constant R; Hinnebusch BJ Cell Microbiol; 2007 Nov; 9(11):2658-66. PubMed ID: 17587333 [TBL] [Abstract][Full Text] [Related]
6. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. Waterfield N; Kamita SG; Hammock BD; ffrench-Constant R FEMS Microbiol Lett; 2005 Apr; 245(1):47-52. PubMed ID: 15796978 [TBL] [Abstract][Full Text] [Related]
7. Photorhabdus luminescens toxin-induced permeability change in Manduca sexta and Tenebrio molitor midgut brush border membrane and in unilamellar phospholipid vesicle. Liu W; Ye W; Wang Z; Wang X; Tian S; Cao H; Lian J Environ Microbiol; 2006 May; 8(5):858-70. PubMed ID: 16623743 [TBL] [Abstract][Full Text] [Related]
8. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Liu D; Burton S; Glancy T; Li ZS; Hampton R; Meade T; Merlo DJ Nat Biotechnol; 2003 Oct; 21(10):1222-8. PubMed ID: 12949536 [TBL] [Abstract][Full Text] [Related]
9. Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Eleftherianos I; Marokhazi J; Millichap PJ; Hodgkinson AJ; Sriboonlert A; ffrench-Constant RH; Reynolds SE Insect Biochem Mol Biol; 2006 Jun; 36(6):517-25. PubMed ID: 16731347 [TBL] [Abstract][Full Text] [Related]
10. The insect toxin complex of Yersinia. Waterfield N; Hares M; Hinchliffe S; Wren B; ffrench-Constant R Adv Exp Med Biol; 2007; 603():247-57. PubMed ID: 17966421 [TBL] [Abstract][Full Text] [Related]
11. Insecticidal genes of Yersinia spp.: taxonomical distribution, contribution to toxicity towards Manduca sexta and Galleria mellonella, and evolution. Fuchs TM; Bresolin G; Marcinowski L; Schachtner J; Scherer S BMC Microbiol; 2008 Dec; 8():214. PubMed ID: 19063735 [TBL] [Abstract][Full Text] [Related]
12. Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Waterfield N; Dowling A; Sharma S; Daborn PJ; Potter U; Ffrench-Constant RH Appl Environ Microbiol; 2001 Nov; 67(11):5017-24. PubMed ID: 11679320 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Péchy-Tarr M; Bruck DJ; Maurhofer M; Fischer E; Vogne C; Henkels MD; Donahue KM; Grunder J; Loper JE; Keel C Environ Microbiol; 2008 Sep; 10(9):2368-86. PubMed ID: 18484997 [TBL] [Abstract][Full Text] [Related]
14. Induced nitric oxide synthesis in the gut of Manduca sexta protects against oral infection by the bacterial pathogen Photorhabdus luminescens. Eleftherianos I; Felföldi G; ffrench-Constant RH; Reynolds SE Insect Mol Biol; 2009 Aug; 18(4):507-16. PubMed ID: 19538546 [TBL] [Abstract][Full Text] [Related]
15. The tc genes of Photorhabdus: a growing family. Waterfield NR; Bowen DJ; Fetherston JD; Perry RD; ffrench-Constant RH Trends Microbiol; 2001 Apr; 9(4):185-91. PubMed ID: 11286884 [TBL] [Abstract][Full Text] [Related]
16. RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Eleftherianos I; Millichap PJ; ffrench-Constant RH; Reynolds SE Dev Comp Immunol; 2006; 30(12):1099-107. PubMed ID: 16620974 [TBL] [Abstract][Full Text] [Related]
17. The HcaR regulatory protein of Photorhabdus luminescens affects the production of proteins involved in oxidative stress and toxemia. Chalabaev S; Turlin E; Charles JF; Namane A; Pagès S; Givaudan A; Brito-Fravallo E; Danchin A; Biville F Proteomics; 2007 Dec; 7(24):4499-510. PubMed ID: 18072208 [TBL] [Abstract][Full Text] [Related]
18. Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Gendlina I; Held KG; Bartra SS; Gallis BM; Doneanu CE; Goodlett DR; Plano GV; Collins CM Mol Microbiol; 2007 Jun; 64(5):1214-27. PubMed ID: 17542916 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. Heermann R; Fuchs TM BMC Genomics; 2008 Jan; 9():40. PubMed ID: 18221513 [TBL] [Abstract][Full Text] [Related]
20. Cloning and heterologous expression of a novel insecticidal gene (tccC1) from Xenorhabdus nematophilus strain. Joo Lee P; Ahn JY; Kim YH; Wook Kim S; Kim JY; Park JS; Lee J Biochem Biophys Res Commun; 2004 Jul; 319(4):1110-6. PubMed ID: 15194482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]