These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 17574332)
1. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts. Chaliha S; Bhattacharyya KG J Hazard Mater; 2008 Feb; 150(3):728-36. PubMed ID: 17574332 [TBL] [Abstract][Full Text] [Related]
2. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique. El-Bahy ZM; Mohamed MM; Zidan FI; Thabet MS J Hazard Mater; 2008 May; 153(1-2):364-71. PubMed ID: 17904732 [TBL] [Abstract][Full Text] [Related]
3. Catalytic wet peroxide oxidation of p-nitrophenol by Fe (III) supported on resin. Liou RM; Chen SH; Huang CH; Lai CL; Shih CY; Chang JS; Hung MY Water Sci Technol; 2010; 62(8):1879-87. PubMed ID: 20962404 [TBL] [Abstract][Full Text] [Related]
4. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination. Ovejero G; Rodríguez A; Vallet A; García J Chemosphere; 2013 Jan; 90(4):1379-86. PubMed ID: 22960061 [TBL] [Abstract][Full Text] [Related]
5. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes. Xiang L; Royer S; Zhang H; Tatibouët JM; Barrault J; Valange S J Hazard Mater; 2009 Dec; 172(2-3):1175-84. PubMed ID: 19709804 [TBL] [Abstract][Full Text] [Related]
6. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Liou RM; Chen SH; Hung MY; Hsu CS; Lai JY Chemosphere; 2005 Mar; 59(1):117-25. PubMed ID: 15698652 [TBL] [Abstract][Full Text] [Related]
7. Treatment of trichlorophenol by catalytic oxidation process. Chu W; Law CK Water Res; 2003 May; 37(10):2339-46. PubMed ID: 12727243 [TBL] [Abstract][Full Text] [Related]
8. An investigation into advanced oxidation of three chlorophenoxy pesticides in surface water. MacAdam J; Parsons SA Water Sci Technol; 2009; 59(8):1665-71. PubMed ID: 19403981 [TBL] [Abstract][Full Text] [Related]
9. Fe salts as catalyst for the wet oxidation of o-chlorophenol. Xu XH; He P; Jin J; Hao ZW J Zhejiang Univ Sci B; 2005 Jun; 6(6):569-73. PubMed ID: 15909346 [TBL] [Abstract][Full Text] [Related]
10. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions. Kojima Y; Fukuta T; Yamada T; Onyango MS; Bernardo EC; Matsuda H; Yagishita K Water Res; 2005 Jan; 39(1):29-36. PubMed ID: 15607161 [TBL] [Abstract][Full Text] [Related]
11. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Zhang H; Fei C; Zhang D; Tang F J Hazard Mater; 2007 Jun; 145(1-2):227-32. PubMed ID: 17161909 [TBL] [Abstract][Full Text] [Related]
12. Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand. Min KS; Dipasquale AG; Rheingold AL; White HS; Miller JS J Am Chem Soc; 2009 May; 131(17):6229-36. PubMed ID: 19358538 [TBL] [Abstract][Full Text] [Related]
13. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Xue X; Hanna K; Deng N J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810 [TBL] [Abstract][Full Text] [Related]
14. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization. Deka B; Bhattacharyya KG J Environ Manage; 2015 Mar; 150():479-488. PubMed ID: 25560663 [TBL] [Abstract][Full Text] [Related]
15. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts. Liou RM; Chen SH; Huang CH; Hung MY; Chang JS; Lai CL Water Sci Technol; 2010; 61(6):1489-98. PubMed ID: 20351428 [TBL] [Abstract][Full Text] [Related]
16. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Wu L; Ritchie SM Chemosphere; 2006 Apr; 63(2):285-92. PubMed ID: 16226292 [TBL] [Abstract][Full Text] [Related]
17. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Repo E; Kurniawan TA; Warchol JK; Sillanpää ME J Hazard Mater; 2009 Nov; 171(1-3):1071-80. PubMed ID: 19632777 [TBL] [Abstract][Full Text] [Related]
18. Kinetic studies of reductive dechlorination of chlorophenols with Ni/Fe bimetallic particles. Ko SO; Lee DH; Kim YH Environ Technol; 2007 May; 28(5):583-93. PubMed ID: 17615967 [TBL] [Abstract][Full Text] [Related]
19. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
20. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature. Lai TL; Liu JY; Yong KF; Shu YY; Wang CB J Hazard Mater; 2008 Sep; 157(2-3):496-502. PubMed ID: 18313217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]