BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 17574533)

  • 1. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids.
    Park WT; O'Connor KN; Chen KL; Mallon JR; Maetani T; Dalal P; Candler RN; Ayanoor-Vitikkate V; Roberson JB; Puria S; Kenny TW
    Biomed Microdevices; 2007 Dec; 9(6):939-49. PubMed ID: 17574533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully implantable hearing aids in patients with congenital auricular atresia.
    Siegert R; Mattheis S; Kasic J
    Laryngoscope; 2007 Feb; 117(2):336-40. PubMed ID: 17277630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap.
    Koch M; Seidler H; Hellmuth A; Bornitz M; Lasurashvili N; Zahnert T
    Hear Res; 2013 Jul; 301():35-43. PubMed ID: 23246425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State of the art on the development of the implantable hearing device for partial hearing loss.
    Maniglia AJ
    Otolaryngol Clin North Am; 1996 Apr; 29(2):225-43. PubMed ID: 8860922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of ossicular chain vibration at the umbo: implications for a middle ear microelectromechanical system design.
    Young DJ; Zurcher MA; Trang T; Megerian CA; Ko WH
    Ear Nose Throat J; 2010 Jan; 89(1):21-6. PubMed ID: 20155695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of a direct install 3-pole type EM transducer in round window niche for implantable middle ear hearing aids.
    Shin DH; Lim HG; Jung ES; Wei Q; Seong KW; Lee JH; Lee SH; Cho JH
    Biomed Mater Eng; 2014; 24(6):2503-10. PubMed ID: 25226951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surgical rehabilitation of deafness with partially implantable hearing aid using piezoelectric ceramic bimorpli ossicular vibrator.
    Yanagihara N; Hinohira Y; Gyo K
    Auris Nasus Larynx; 1997; 24(1):91-8. PubMed ID: 9148734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Implantable middle ear hearing aids].
    à Wengen DF
    Ther Umsch; 2004 Jan; 61(1):47-52. PubMed ID: 14998000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of incus removal on middle ear acoustic sensor for a fully implantable cochlear prosthesis.
    Zurcher MA; Young DJ; Semaan M; Megerian CA; Ko WH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():539-42. PubMed ID: 17945982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an implantable hearing aid using a piezoelectric vibrator of bimorph design: state of the art.
    Yanagihara N; Suzuki J; Gyo K; Syono H; Ikeda H
    Otolaryngol Head Neck Surg; 1984 Dec; 92(6):706-12. PubMed ID: 6440092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partially implantable hearing aid using piezoelectric ceramic ossicular vibrator. Results of the implant operation and assessment of the hearing afforded by the device.
    Yanagihara N; Gyo K; Hinohira Y
    Otolaryngol Clin North Am; 1995 Feb; 28(1):85-97. PubMed ID: 7739871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning laser Doppler vibrometry of the middle ear ossicles.
    Ball GR; Huber A; Goode RL
    Ear Nose Throat J; 1997 Apr; 76(4):213-8, 220, 222. PubMed ID: 9127520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of MEMS Acoustic Sensors as Implantable Microphones for Totally Implantable Hearing-Aid Systems.
    Ko WH; Rui Zhang ; Ping Huang ; Jun Guo ; Xuesong Ye ; Young DJ; Megerian CA
    IEEE Trans Biomed Circuits Syst; 2009 Oct; 3(5):277-85. PubMed ID: 23853266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The history and development of the implantable hearing aid.
    Goode RL; Rosenbaum ML; Maniglia AJ
    Otolaryngol Clin North Am; 1995 Feb; 28(1):1-16. PubMed ID: 7739857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraoperative ossicular loading with the Otologics fully implantable hearing device.
    Jenkins HA; Pergola N; Kasic J
    Acta Otolaryngol; 2007 Apr; 127(4):360-4. PubMed ID: 17453454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a silicon-based shear-force sensor on human subjects.
    Wang L; Beebe DJ
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1340-7. PubMed ID: 12450364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Vibro-Acoustic Hybrid Implantable Microphone for Middle Ear Hearing Aids and Cochlear Implants.
    Seong KW; Mun HJ; Shin DH; Kim JH; Nakajima HH; Puria S; Cho JH
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical aspects in implantable microphones and hearing aids and development of a concept with a hydroacoustical transmission.
    Hüttenbrink KB; Zahnert TH; Bornitz M; Hofmann G
    Acta Otolaryngol; 2001 Jan; 121(2):185-9. PubMed ID: 11349775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly and packaging of a three-axis micro accelerometer used for detection of heart infarction.
    Imenes K; Aasmundtveit K; Husa EM; Høgetveit JO; Halvorsen S; Elle OJ; Mirtaheri P; Fosse E; Hoff L
    Biomed Microdevices; 2007 Dec; 9(6):951-7. PubMed ID: 17492383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.