These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 17574922)

  • 21. Uncertainty in prediction of disinfection performance.
    Neumann MB; von Gunten U; Gujer W
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of outbreaks of waterborne disease associated with ships: evidence for risk management.
    Rooney RM; Bartram JK; Cramer EH; Mantha S; Nichols G; Suraj R; Todd EC
    Public Health Rep; 2004; 119(4):435-42. PubMed ID: 15219801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of waterborne protozoan passage through conventional drinking water treatment process in Venezuela.
    Betancourt WQ; Mena KD
    J Water Health; 2012 Jun; 10(2):324-36. PubMed ID: 22717757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection.
    Gómez-Couso H; Fontán-Sainz M; Fernández-Alonso J; Ares-Mazás E
    Parasitology; 2009 Apr; 136(4):393-9. PubMed ID: 19195413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of seeding procedures and water quality on recovery of Cryptosporidium oocysts from stream water by using U.S. Environmental Protection Agency Method 1623.
    Francy DS; Simmons OD; Ware MW; Granger EJ; Sobsey MD; Schaefer FW
    Appl Environ Microbiol; 2004 Jul; 70(7):4118-28. PubMed ID: 15240291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal retention and release of Cryptosporidium parvum oocysts by environmental biofilms in the laboratory.
    Wolyniak EA; Hargreaves BR; Jellison KL
    Appl Environ Microbiol; 2010 Feb; 76(4):1021-7. PubMed ID: 20023100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biofilm Sampling for Detection of
    Jellison K; Cannistraci D; Fortunato J; McLeod C
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.
    Luo X; Jedlicka S; Jellison K
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27793825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive management for mitigating Cryptosporidium risk in source water: a case study in an agricultural catchment in South Australia.
    Bryan BA; Kandulu J; Deere DA; White M; Frizenschaf J; Crossman ND
    J Environ Manage; 2009 Jul; 90(10):3122-34. PubMed ID: 19515479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First investigations into the prevalence of Cryptosporidium and Giardia spp. in Hungarian drinking water.
    Plutzer J; Takó MH; Márialigeti K; Törökné A; Karanis P
    J Water Health; 2007 Dec; 5(4):573-84. PubMed ID: 17878568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of Cryptosporidium parvum under chlorinated recreational water conditions.
    Shields JM; Hill VR; Arrowood MJ; Beach MJ
    J Water Health; 2008 Dec; 6(4):513-20. PubMed ID: 18401116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The necessity of including Cryptosporidium oocysts among indicators of epidemic safety of drinking water].
    Romanenko NA; Sergiev VP; Rakhmanin IuA
    Gig Sanit; 2001; (1):18-9. PubMed ID: 11236466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using ultraviolet light for disinfection of finished water.
    Bukhari Z; Abrams F; LeChevallier M
    Water Sci Technol; 2004; 50(1):173-8. PubMed ID: 15318505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for the existence of Cryptosporidium oocysts as single entities in surface runoff.
    Kaucner C; Davies CM; Ferguson CM; Ashbolt NJ
    Water Sci Technol; 2005; 52(8):199-204. PubMed ID: 16312968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water.
    Gómez-Couso H; Fontán-Sainz M; McGuigan KG; Ares-Mazás E
    Acta Trop; 2009 Oct; 112(1):43-8. PubMed ID: 19539587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fault tree analysis of the causes of waterborne outbreaks.
    Risebro HL; Doria MF; Andersson Y; Medema G; Osborn K; Schlosser O; Hunter PR
    J Water Health; 2007; 5 Suppl 1():1-18. PubMed ID: 17890833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Waterborne protozoan pathogens in environmental aquatic biofilms: Implications for water quality assessment strategies.
    Masangkay FR; Milanez GD; Tsiami A; Hapan FZ; Somsak V; Kotepui M; Tangpong J; Karanis P
    Environ Pollut; 2020 Apr; 259():113903. PubMed ID: 32023789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Cryptosporidium oocysts and epidemic safety of drinking water in the Russian Federation].
    Romanenko NA; Sergiev VP; Rakhmanin IuA
    Med Parazitol (Mosk); 2001; (2):11-3. PubMed ID: 11702450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2.
    Méndez-Hermida F; Ares-Mazás E; McGuigan KG; Boyle M; Sichel C; Fernández-Ibáñez P
    J Photochem Photobiol B; 2007 Sep; 88(2-3):105-11. PubMed ID: 17624798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil.
    Pereira JT; Costa AO; de Oliveira Silva MB; Schuchard W; Osaki SC; de Castro EA; Paulino RC; Soccol VT
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):464-73. PubMed ID: 18498060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.