BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 17574942)

  • 21. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics.
    Draenert M; Draenert A; Draenert K
    Microsc Res Tech; 2013 Apr; 76(4):370-80. PubMed ID: 23390042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone.
    Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T
    Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The controlled resorption of porous alpha-tricalcium phosphate using a hydroxypropylcellulose coating.
    Kitamura M; Ohtsuki C; Iwasaki H; Ogata S; Tanihara M; Miyazaki T
    J Mater Sci Mater Med; 2004 Oct; 15(10):1153-8. PubMed ID: 15516878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field.
    Shimizu T; Zerwekh JE; Videman T; Gill K; Mooney V; Holmes RE; Hagler HK
    J Orthop Res; 1988; 6(2):248-58. PubMed ID: 2830390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanical properties of calcium phospate ceramics modified by collagen coating and populated by osteoblasts.
    Brodie JC; Merry J; Grant MH
    J Mater Sci Mater Med; 2006 Jan; 17(1):43-8. PubMed ID: 16389471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Incorporation and biodegradation of hydroxyapatite-tricalcium phosphate implanted in large metaphyseal defects--an animal study.
    Sunil P; Goel SC; Rastogi A; Aryya NC
    Indian J Exp Biol; 2008 Dec; 46(12):836-41. PubMed ID: 19245181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence.
    Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD
    Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites.
    Zhang F; Chang J; Lu J; Lin K; Ning C
    Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics.
    Kamitakahara M; Tatsukawa E; Shibata Y; Umemoto S; Yokoi T; Ioku K; Ikeda T
    J Mater Sci Mater Med; 2016 May; 27(5):97. PubMed ID: 27003839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics.
    Seeley Z; Bandyopadhyay A; Bose S
    J Biomed Mater Res A; 2007 Jul; 82(1):113-21. PubMed ID: 17269142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Preparation of porous ceramic macro-tubes scaffold].
    Zheng W
    Zhongguo Yi Liao Qi Xie Za Zhi; 2011 May; 35(3):185-8. PubMed ID: 21954576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects.
    Moore DC; Chapman MW; Manske D
    J Orthop Res; 1987; 5(3):356-65. PubMed ID: 3040949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model.
    Toth JM; An HS; Lim TH; Ran Y; Weiss NG; Lundberg WR; Xu RM; Lynch KL
    Spine (Phila Pa 1976); 1995 Oct; 20(20):2203-10. PubMed ID: 8545713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.
    Bellucci D; Sola A; Cannillo V
    J Biomed Mater Res A; 2016 Apr; 104(4):1030-56. PubMed ID: 26646669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects.
    Nery EB; LeGeros RZ; Lynch KL; Lee K
    J Periodontol; 1992 Sep; 63(9):729-35. PubMed ID: 1335498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replacement of segmental bone defects using porous bioceramic cylinders: a biomechanical and X-ray diffraction study.
    Zhang C; Wang J; Feng H; Lu B; Song Z; Zhang X
    J Biomed Mater Res; 2001 Mar; 54(3):407-11. PubMed ID: 11189048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.