BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1757495)

  • 1. Ultrastructure of chromatin. II. Three-dimensional reconstruction of isolated fibers.
    Woodcock CL; McEwen BF; Frank J
    J Cell Sci; 1991 May; 99 ( Pt 1)():107-14. PubMed ID: 1757495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of chromatin. I. Negative staining of isolated fibers.
    Woodcock CL; Woodcock H; Horowitz RA
    J Cell Sci; 1991 May; 99 ( Pt 1)():99-106. PubMed ID: 1757505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin.
    Athey BD; Smith MF; Rankert DA; Williams SP; Langmore JP
    J Cell Biol; 1990 Sep; 111(3):795-806. PubMed ID: 2391364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers.
    Horowitz RA; Koster AJ; Walz J; Woodcock CL
    J Struct Biol; 1997 Dec; 120(3):353-62. PubMed ID: 9441938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial density distribution of chromatin: evidence that chromatin fibers have solid centers.
    Smith MF; Athey BD; Williams SP; Langmore JP
    J Cell Biol; 1990 Feb; 110(2):245-54. PubMed ID: 2298806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length.
    Williams SP; Athey BD; Muglia LJ; Schappe RS; Gough AH; Langmore JP
    Biophys J; 1986 Jan; 49(1):233-48. PubMed ID: 3955173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon.
    Horowitz RA; Agard DA; Sedat JW; Woodcock CL
    J Cell Biol; 1994 Apr; 125(1):1-10. PubMed ID: 8138564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures.
    Woodcock CL; Grigoryev SA; Horowitz RA; Whitaker N
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):9021-5. PubMed ID: 8415647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional reconstruction of chromatin fibers.
    Subirana JA; Muñoz-Guerra S; Radermacher M; Frank J
    J Biomol Struct Dyn; 1983 Dec; 1(3):705-14. PubMed ID: 6400895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.
    Scheffer MP; Eltsov M; Frangakis AS
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16992-7. PubMed ID: 21969536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The layered organization of nucleosomes in 30 nm chromatin fibers.
    Subirana JA; Muñoz-Guerra S; Aymamí J; Radermacher M; Frank J
    Chromosoma; 1985; 91(5):377-90. PubMed ID: 4039646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereo electron microscopy of the 25-nm chromatin fibers in isolated nuclei.
    Olins AL; Olins DE
    J Cell Biol; 1979 Apr; 81(1):260-5. PubMed ID: 479289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro.
    Scheffer MP; Eltsov M; Bednar J; Frangakis AS
    J Struct Biol; 2012 May; 178(2):207-14. PubMed ID: 22138167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length.
    Woodcock CL
    J Cell Biol; 1994 Apr; 125(1):11-9. PubMed ID: 8138565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin organization in detergent-lysed chicken erythrocyte nuclei.
    Seki S; Nakamura T; Suma F; Murakami M; Mori S; Oda T
    J Electron Microsc Tech; 1987 Nov; 7(3):223-31. PubMed ID: 3504449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning force microscopy of chromatin fibers in air and in liquid.
    Fritzsche W; Schaper A; Jovin TM
    Scanning; 1995; 17(3):148-55. PubMed ID: 7795839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of chromatin and the linking number of DNA.
    Worcel A; Strogatz S; Riley D
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1461-5. PubMed ID: 6940168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The higher-order structure of chromatin: evidence for a helical ribbon arrangement.
    Woodcock CL; Frado LL; Rattner JB
    J Cell Biol; 1984 Jul; 99(1 Pt 1):42-52. PubMed ID: 6736132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation of the nucleosome within the higher order structure of chromatin.
    McGhee JD; Rau DC; Charney E; Felsenfeld G
    Cell; 1980 Nov; 22(1 Pt 1):87-96. PubMed ID: 7428043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.