These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17575999)

  • 1. Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters.
    Liang CH; Chiang PC; Chang EE
    Water Res; 2007 Aug; 41(15):3241-50. PubMed ID: 17575999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of the non-steady-state adsorption and biodegradation capacities of BAC filters.
    Liang CH; Chiang PC
    J Hazard Mater; 2007 Jan; 139(2):316-22. PubMed ID: 16860932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioadsorber efficiency, design, and performance forecasting for alachlor removal.
    Badriyha BN; Ravindran V; Den W; Pirbazari M
    Water Res; 2003 Oct; 37(17):4051-72. PubMed ID: 12946887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH).
    Badruzzaman M; Westerhoff P; Knappe DR
    Water Res; 2004 Nov; 38(18):4002-12. PubMed ID: 15380990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.
    Baup S; Wolbert D; Laplanche A
    Environ Technol; 2002 Oct; 23(10):1107-17. PubMed ID: 12465837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of adsorption uptake curves for both intraparticle diffusion and liquid film mass transfer controlling systems.
    Sonetaka N; Fan HJ; Kobayashi S; Su YC; Furuya E
    J Hazard Mater; 2009 Jun; 165(1-3):232-9. PubMed ID: 19046803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater.
    Xing W; Ngo HH; Kim SH; Guo WS; Hagare P
    Bioresour Technol; 2008 Dec; 99(18):8674-8. PubMed ID: 18511272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal mechanisms of H(2)S using exhausted carbon in biofiltration.
    Jiang X; Tay JH
    J Hazard Mater; 2011 Jan; 185(2-3):1543-9. PubMed ID: 21075518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on the mechanism of H(2)S removal by biological activated carbon in a horizontal biotrickling filter.
    Duan H; Yan R; Koe LC
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):350-7. PubMed ID: 16028045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches.
    Sperlich A; Werner A; Genz A; Amy G; Worch E; Jekel M
    Water Res; 2005 Mar; 39(6):1190-8. PubMed ID: 15766974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins.
    Wang H; Ho L; Lewis DM; Brookes JD; Newcombe G
    Water Res; 2007 Oct; 41(18):4262-70. PubMed ID: 17604809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.
    Matsui Y; Ando N; Sasaki H; Matsushita T; Ohno K
    Water Res; 2009 Jul; 43(12):3095-103. PubMed ID: 19457533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions.
    Demirbas E; Kobya M; Konukman AE
    J Hazard Mater; 2008 Jun; 154(1-3):787-94. PubMed ID: 18068295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons.
    Fontecha-Cámara MA; López-Ramón MV; Pastrana-Martínez LM; Moreno-Castilla C
    J Hazard Mater; 2008 Aug; 156(1-3):472-7. PubMed ID: 18241982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration.
    Duan H; Yan R; Koe LC; Wang X
    Chemosphere; 2007 Jan; 66(9):1684-91. PubMed ID: 16930670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of organic compounds to activated carbons. Evaluation of isotherm models.
    Pikaar I; Koelmans AA; van Noort PC
    Chemosphere; 2006 Dec; 65(11):2343-51. PubMed ID: 16782170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of intraparticle diffusivity and liquid film mass transfer coefficient from a single-component adsorption uptake curve.
    Sonetaka N; Fan HJ; Kobayashi S; Chang HN; Furuya E
    J Hazard Mater; 2009 May; 164(2-3):1447-51. PubMed ID: 18995963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability.
    Mittal M; Rockne KJ
    Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of phenol adsorption onto electro-activated carbon granules.
    Lounici H; Aioueche F; Belhocine D; Drouiche M; Pauss A; Mameri N
    Water Res; 2004 Jan; 38(1):218-24. PubMed ID: 14630120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of biological activated carbon as a low pH biofilter medium for gas mixture treatment.
    Liang J; Chiaw LK; Ning X
    Biotechnol Bioeng; 2007 Apr; 96(6):1092-100. PubMed ID: 17009326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.