BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17576140)

  • 1. Stage-dependent craniofacial defects resulting from Sprouty2 overexpression.
    Goodnough LH; Brugmann SA; Hu D; Helms JA
    Dev Dyn; 2007 Jul; 236(7):1918-28. PubMed ID: 17576140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling.
    Matsumura K; Taketomi T; Yoshizaki K; Arai S; Sanui T; Yoshiga D; Yoshimura A; Nakamura S
    Biochem Biophys Res Commun; 2011 Jan; 404(4):1076-82. PubMed ID: 21195053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dosage-dependent role for Spry2 in growth and patterning during palate development.
    Welsh IC; Hagge-Greenberg A; O'Brien TP
    Mech Dev; 2007; 124(9-10):746-61. PubMed ID: 17693063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling.
    Taniguchi K; Ayada T; Ichiyama K; Kohno R; Yonemitsu Y; Minami Y; Kikuchi A; Maehara Y; Yoshimura A
    Biochem Biophys Res Commun; 2007 Jan; 352(4):896-902. PubMed ID: 17156747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FGF signalling and SUMO modification: new players in the aetiology of cleft lip and/or palate.
    Pauws E; Stanier P
    Trends Genet; 2007 Dec; 23(12):631-40. PubMed ID: 17981355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facial clefting in Tp63 deficient mice results from altered Bmp4, Fgf8 and Shh signaling.
    Thomason HA; Dixon MJ; Dixon J
    Dev Biol; 2008 Sep; 321(1):273-82. PubMed ID: 18634775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of isthmic Fgf8 signal by sprouty2.
    Suzuki-Hirano A; Sato T; Nakamura H
    Development; 2005 Jan; 132(2):257-65. PubMed ID: 15590739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and regulation of chicken fibroblast growth factor homologous factor (FHF)-4 during craniofacial morphogenesis.
    Muñoz-Sanjuán I; Cooper MK; Beachy PA; Fallon JF; Nathans J
    Dev Dyn; 2001 Mar; 220(3):238-45. PubMed ID: 11241832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the lip and palate: FGF signalling.
    Stanier P; Pauws E
    Front Oral Biol; 2012; 16():71-80. PubMed ID: 22759671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF signals from the nasal pit are necessary for normal facial morphogenesis.
    Szabo-Rogers HL; Geetha-Loganathan P; Nimmagadda S; Fu KK; Richman JM
    Dev Biol; 2008 Jun; 318(2):289-302. PubMed ID: 18455717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGF signalling in craniofacial development and developmental disorders.
    Nie X; Luukko K; Kettunen P
    Oral Dis; 2006 Mar; 12(2):102-11. PubMed ID: 16476029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated events: FGF signaling and other related pathways in palatogenesis.
    Snyder-Warwick AK; Perlyn CA
    J Craniofac Surg; 2012 Mar; 23(2):397-400. PubMed ID: 22421835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dll3 and Notch1 genetic interactions model axial segmental and craniofacial malformations of human birth defects.
    Loomes KM; Stevens SA; O'Brien ML; Gonzalez DM; Ryan MJ; Segalov M; Dormans NJ; Mimoto MS; Gibson JD; Sewell W; Schaffer AA; Nah HD; Rappaport EF; Pratt SC; Dunwoodie SL; Kusumi K
    Dev Dyn; 2007 Oct; 236(10):2943-51. PubMed ID: 17849441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling.
    Shim K; Minowada G; Coling DE; Martin GR
    Dev Cell; 2005 Apr; 8(4):553-64. PubMed ID: 15809037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy.
    Aggarwal VS; Liao J; Bondarev A; Schimmang T; Lewandoski M; Locker J; Shanske A; Campione M; Morrow BE
    Hum Mol Genet; 2006 Nov; 15(21):3219-28. PubMed ID: 17000704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SP8 regulates signaling centers during craniofacial development.
    Kasberg AD; Brunskill EW; Steven Potter S
    Dev Biol; 2013 Sep; 381(2):312-23. PubMed ID: 23872235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper beak truncation in chicken embryos with the cleft primary palate mutation is due to an epithelial defect in the frontonasal mass.
    MacDonald ME; Abbott UK; Richman JM
    Dev Dyn; 2004 Jun; 230(2):335-49. PubMed ID: 15162512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tfap2a-dependent changes in mouse facial morphology result in clefting that can be ameliorated by a reduction in Fgf8 gene dosage.
    Green RM; Feng W; Phang T; Fish JL; Li H; Spritz RA; Marcucio RS; Hooper J; Jamniczky H; Hallgrímsson B; Williams T
    Dis Model Mech; 2015 Jan; 8(1):31-43. PubMed ID: 25381013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fgf signaling components are associated with muscles and tendons during limb development.
    Eloy-Trinquet S; Wang H; Edom-Vovard F; Duprez D
    Dev Dyn; 2009 May; 238(5):1195-206. PubMed ID: 19384958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External genitalia formation: role of fibroblast growth factor, retinoic acid signaling, and distal urethral epithelium.
    Ogino Y; Suzuki K; Haraguchi R; Satoh Y; Dolle P; Yamada G
    Ann N Y Acad Sci; 2001 Dec; 948():13-31. PubMed ID: 11795391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.