These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17576485)

  • 41. Hydrogen storage capacity of catalytically grown carbon nanofibers.
    Rzepka M; Bauer E; Reichenauer G; Schliermann T; Bernhardt B; Bohmhammel K; Henneberg E; Knoll U; Maneck HE; Braue W
    J Phys Chem B; 2005 Aug; 109(31):14979-89. PubMed ID: 16852897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The roles of dihydrogen bonds in amine borane chemistry.
    Chen X; Zhao JC; Shore SG
    Acc Chem Res; 2013 Nov; 46(11):2666-75. PubMed ID: 24020948
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of longtime water/air-stable ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation.
    Yan JM; Zhang XB; Han S; Shioyama H; Xu Q
    Inorg Chem; 2009 Aug; 48(15):7389-93. PubMed ID: 19722696
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective.
    Bhattacharjee I; Sultana M; Bhunya S; Paul A
    Chem Commun (Camb); 2022 Feb; 58(11):1672-1684. PubMed ID: 35024699
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of the first step of hydrogen release in ammonia borane using high-resolution Raman spectroscopy and different heating ramps.
    Hinojosa-Nava R; Mejía-Uriarte EV; Vázquez-Olmos AR; Sato-Berrú RY
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121776. PubMed ID: 36070673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coordination and dehydrogenation of amine-boranes at metal centers.
    Alcaraz G; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2010 Sep; 49(40):7170-9. PubMed ID: 20721992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material.
    Kang X; Fang Z; Kong L; Cheng H; Yao X; Lu G; Wang P
    Adv Mater; 2008 Jul; 20(14):2756-9. PubMed ID: 25213902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The shape of the potential energy curves for NHN(+) hydrogen bonds and the influence of non-linearity.
    Majerz I; Olovsson I
    Phys Chem Chem Phys; 2008 Jun; 10(21):3043-51. PubMed ID: 18688367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of free N-heterocyclic carbene (NHC) in the catalytic dehydrogenation of ammonia-borane in the nickel NHC system.
    Zimmerman PM; Paul A; Zhang Z; Musgrave CB
    Angew Chem Int Ed Engl; 2009; 48(12):2201-5. PubMed ID: 19204967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Portable Power Generation for Remote Areas Using Hydrogen Generated via Maleic Acid-Promoted Hydrolysis of Ammonia Borane.
    Groom TB; Gabl JR; Pourpoint TL
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31717273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ti-substituted boranes as hydrogen storage materials: a computational quest for the ideal combination of stable electronic structure and optimal hydrogen uptake.
    Zhang CG; Zhang R; Wang ZX; Zhou Z; Zhang SB; Chen Z
    Chemistry; 2009 Jun; 15(24):5910-9. PubMed ID: 19472230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Raman spectroscopy study of ammonia borane at high pressure.
    Lin Y; Mao WL; Drozd V; Chen J; Daemen LL
    J Chem Phys; 2008 Dec; 129(23):234509. PubMed ID: 19102540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxidative addition of ammonia at a silicon(II) center and an unprecedented hydrogenation reaction of compounds with low-valent group 14 elements using ammonia borane.
    Jana A; Schulzke C; Roesky HW
    J Am Chem Soc; 2009 Apr; 131(13):4600-1. PubMed ID: 19296628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A concerted transfer hydrogenolysis: 1,3,2-diazaphospholene-catalyzed hydrogenation of N=N bond with ammonia-borane.
    Chong CC; Hirao H; Kinjo R
    Angew Chem Int Ed Engl; 2014 Mar; 53(13):3342-6. PubMed ID: 24615812
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical and physical solutions for hydrogen storage.
    Eberle U; Felderhoff M; Schüth F
    Angew Chem Int Ed Engl; 2009; 48(36):6608-30. PubMed ID: 19598190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoporous polymers for hydrogen storage.
    Germain J; Fréchet JM; Svec F
    Small; 2009 May; 5(10):1098-111. PubMed ID: 19360719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metal-free catalysis of ammonia-borane dehydrogenation/regeneration for a highly efficient and facilely recyclable hydrogen-storage material.
    Tang Z; Chen X; Chen H; Wu L; Yu X
    Angew Chem Int Ed Engl; 2013 May; 52(22):5832-5. PubMed ID: 23609939
    [No Abstract]   [Full Text] [Related]  

  • 58. Unprecedented flexibility of the >Ti=Si< group for the addition of H2.
    Maj L; Grochala W
    Phys Chem Chem Phys; 2007 Jun; 9(21):2706-12. PubMed ID: 17627314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrazine borane: a promising hydrogen storage material.
    Hügle T; Kühnel MF; Lentz D
    J Am Chem Soc; 2009 Jun; 131(21):7444-6. PubMed ID: 19432429
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage.
    Shin K; Kim Y; Strobel TA; Prasad PS; Sugahara T; Lee H; Sloan ED; Sum AK; Koh CA
    J Phys Chem A; 2009 Jun; 113(23):6415-8. PubMed ID: 19445522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.