BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 17576645)

  • 21. Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-alpha.
    Sánchez-Acevedo ZC; Riu J; Rius FX
    Biosens Bioelectron; 2009 May; 24(9):2842-6. PubMed ID: 19303279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Femtomolar detection of 2,4-dichlorophenoxyacetic acid herbicides via competitive immunoassays using microfluidic based carbon nanotube liquid gated transistor.
    Wijaya IP; Nie TJ; Gandhi S; Boro R; Palaniappan A; Hau GW; Rodriguez I; Suri CR; Mhaisalkar SG
    Lab Chip; 2010 Mar; 10(5):634-8. PubMed ID: 20162239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanotube based aliphatic hydrocarbon sensor.
    Padigi SK; Reddy RK; Prasad S
    Biosens Bioelectron; 2007 Jan; 22(6):829-37. PubMed ID: 16638636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanotube network transistors from peptide-wrapped single-walled carbon nanotubes.
    Panhuis Mi; Gowrisanker S; Vanesko DJ; Mire CA; Jia H; Xie H; Baughman RH; Musselman IH; Gnade BE; Dieckmann GR; Draper RK
    Small; 2005 Aug; 1(8-9):820-3. PubMed ID: 17193531
    [No Abstract]   [Full Text] [Related]  

  • 26. A novel fluorescent aptasensor based on single-walled carbon nanohorns.
    Zhu S; Han S; Zhang L; Parveen S; Xu G
    Nanoscale; 2011 Nov; 3(11):4589-92. PubMed ID: 22006211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA sensing by field-effect transistors based on networks of carbon nanotubes.
    Gui EL; Li LJ; Zhang K; Xu Y; Dong X; Ho X; Lee PS; Kasim J; Shen ZX; Rogers JA; Mhaisalkar SG
    J Am Chem Soc; 2007 Nov; 129(46):14427-32. PubMed ID: 17973383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R
    Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode.
    Meng L; Wu P; Chen G; Cai C; Sun Y; Yuan Z
    Biosens Bioelectron; 2009 Feb; 24(6):1751-6. PubMed ID: 18945610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanotube devices: Watching electrons in real time.
    Habenicht BF; Prezhdo OV
    Nat Nanotechnol; 2008 Apr; 3(4):190-1. PubMed ID: 18654500
    [No Abstract]   [Full Text] [Related]  

  • 31. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips.
    Sun G; Huang Y; Zheng L; Zhan Z; Zhang Y; Pang JH; Wu T; Chen P
    Nanoscale; 2011 Nov; 3(11):4854-8. PubMed ID: 21997308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode.
    Mahmoud KA; Hrapovic S; Luong JH
    ACS Nano; 2008 May; 2(5):1051-7. PubMed ID: 19206503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges.
    Moriyama N; Ohno Y; Kitamura T; Kishimoto S; Mizutani T
    Nanotechnology; 2010 Apr; 21(16):165201. PubMed ID: 20348598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel poly-silicon nanowire field effect transistor for biosensing application.
    Hsiao CY; Lin CH; Hung CH; Su CJ; Lo YR; Lee CC; Lin HC; Ko FH; Huang TY; Yang YS
    Biosens Bioelectron; 2009 Jan; 24(5):1223-9. PubMed ID: 18760914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Instrumentation: carbon nanotubes on the brain.
    Parpura V
    Nat Nanotechnol; 2008 Jul; 3(7):384-5. PubMed ID: 18654560
    [No Abstract]   [Full Text] [Related]  

  • 38. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.
    Kim JP; Lee BY; Lee J; Hong S; Sim SJ
    Biosens Bioelectron; 2009 Jul; 24(11):3372-8. PubMed ID: 19481922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications.
    Byon HR; Choi HC
    J Am Chem Soc; 2006 Feb; 128(7):2188-9. PubMed ID: 16478153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The carbon nanotube-based nanobiosensor: a key component for ubiquitous real-time bioscreening system?
    Chen X; Kim D; Hong S
    Nanomedicine (Lond); 2014 Apr; 9(5):565-7. PubMed ID: 24827838
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.