BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17576676)

  • 21. Structural snapshots of the KMSKS loop rearrangement for amino acid activation by bacterial tyrosyl-tRNA synthetase.
    Kobayashi T; Takimura T; Sekine R; Kelly VP; Kamata K; Sakamoto K; Nishimura S; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):105-17. PubMed ID: 15663931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural analyses on yeast tRNA(Tyr) and its complex with tyrosyl-tRNA synthetase by the use of hydroxyl radical 'footprinting'.
    Motoki I; Yosinari S; Watanabe K; Nishikawa K
    Nucleic Acids Symp Ser; 1991; (25):173-4. PubMed ID: 1842072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features.
    Bonnefond L; Frugier M; Touzé E; Lorber B; Florentz C; Giegé R; Sauter C; Rudinger-Thirion J
    Structure; 2007 Nov; 15(11):1505-16. PubMed ID: 17997975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. tRNA-controlled nuclear import of a human tRNA synthetase.
    Fu G; Xu T; Shi Y; Wei N; Yang XL
    J Biol Chem; 2012 Mar; 287(12):9330-4. PubMed ID: 22291016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS.
    Abergel C; Rudinger-Thirion J; Giegé R; Claverie JM
    J Virol; 2007 Nov; 81(22):12406-17. PubMed ID: 17855524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair.
    Quinn CL; Tao N; Schimmel P
    Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase.
    Bedouelle H
    Biochimie; 1990 Aug; 72(8):589-98. PubMed ID: 2126463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
    Rauch BJ; Porter JJ; Mehl RA; Perona JJ
    Biochemistry; 2016 Jan; 55(3):618-28. PubMed ID: 26694948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystallization and preliminary X-ray crystallographic analysis of yeast tyrosyl-tRNA synthetase complexed with its cognate tRNA.
    Kusakabe Y; Ohno S; Tanaka N; Nakamura M; Tsunoda M; Moriguchi T; Asai N; Sekine M; Yokogawa T; Nishikawa K; Nakamura KT
    Protein Pept Lett; 2006; 13(4):417-9. PubMed ID: 16712521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer.
    Larson ET; Kim JE; Castaneda LJ; Napuli AJ; Zhang Z; Fan E; Zucker FH; Verlinde CL; Buckner FS; Van Voorhis WC; Hol WG; Merritt EA
    J Mol Biol; 2011 Jun; 409(2):159-76. PubMed ID: 21420975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase.
    Richardson CJ; First EA
    Biochemistry; 2016 May; 55(17):2526-37. PubMed ID: 27064538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in tyrosine tRNA identity between Escherichia coli and archaeon, Aeropyrum pernix K1.
    Iwaki J; Asahara H; Nagaoka Y; Yokozawa J; Umehara T; Kawarabayasi Y; Koyama Y; Sako Y; Kuno A; Hasegawa T
    Nucleic Acids Res Suppl; 2002; (2):225-6. PubMed ID: 12903187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pseudo-dimeric tyrosyl-tRNA synthetase of T. brucei aminoacylates cytosolic and mitochondrial tRNA
    Käser S; Glauser I; Rettig J; Schneider A
    Mol Biochem Parasitol; 2018 Apr; 221():52-55. PubMed ID: 29581012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational modeling and molecular dynamics simulations of mammalian cytoplasmic tyrosyl-tRNA synthetase and its complexes with substrates.
    Kravchuk VO; Savytskyi OV; Odynets KO; Mykuliak VV; Kornelyuk AI
    J Biomol Struct Dyn; 2017 Oct; 35(13):2772-2788. PubMed ID: 27615678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions.
    Kittle JD; Mohr G; Gianelos JA; Wang H; Lambowitz AM
    Genes Dev; 1991 Jun; 5(6):1009-21. PubMed ID: 1828448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disordered C-terminal domain of tyrosyl transfer-RNA synthetase: evidence for a folded state.
    Guez-Ivanier V; Bedouelle H
    J Mol Biol; 1996 Jan; 255(1):110-20. PubMed ID: 8568859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disordered C-terminal domain of tyrosyl-tRNA synthetase: secondary structure prediction.
    Jermutus L; Guez V; Bedouelle H
    Biochimie; 1999 Mar; 81(3):235-44. PubMed ID: 10385005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.