These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 175777)

  • 21. Malate dehydrogenase, circular dichroism difference spectra of porcine heart mitochondrial and supernatant enzymes, binary enzyme-coenzyme, and ternary enzyme-coenzyme-substrate analog complexes.
    Eberhardt NL; Wolfe RG
    J Biol Chem; 1975 Apr; 250(8):2987-92. PubMed ID: 235534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The equilibrium position of the reaction of bovine liver glutamate dehydrogenase with pyridoxal5'-phosphate. A demonstration that covalent modification with this reagent completely abolishes catalytic activity.
    Chen SS; Engel PC
    Biochem J; 1975 May; 147(2):351-8. PubMed ID: 1237292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chlorothricin, and inhibitor of porcine-heart malate dehydrogenases, discriminating between the mitochondrial and cytoplasmic isoenzyme.
    Schindler PW
    Eur J Biochem; 1975 Feb; 51(2):579-85. PubMed ID: 168072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the reconstituted oxoglutarate carrier from bovine heart mitochondria by pyridoxal 5'-phosphate.
    Natuzzi D; Daddabbo L; Stipani V; Cappello AR; Miniero DV; Capobianco L; Stipani I
    J Bioenerg Biomembr; 1999 Dec; 31(6):535-41. PubMed ID: 10682911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial nicotinamide nucleotide transhydrogenase: inhibition by ethoxyformic anhydride, dansyl chloride, and pyridoxal phosphate.
    Yamaguchi M; Hatefi Y
    Arch Biochem Biophys; 1985 Nov; 243(1):20-7. PubMed ID: 4062302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disequilibrium in the malate dehydrogenase reaction in rat liver mitochondria in vivo.
    Heath DF; Phillips JC
    Biochem J; 1972 Apr; 127(3):453-70. PubMed ID: 4342489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkylation studies on a reactive histidine in pig heart malate dehydrogenase.
    Anderton BH; Rabin BR
    Eur J Biochem; 1970 Sep; 15(3):568-73. PubMed ID: 4318422
    [No Abstract]   [Full Text] [Related]  

  • 29. A reactive histidine residue at the active site of pig heart mitochondrial malate dehydrogenase.
    Anderton BH; Rabin BR
    Biochem J; 1970 Jun; 118(2):17P. PubMed ID: 4394947
    [No Abstract]   [Full Text] [Related]  

  • 30. Malate dehydrogenase, anticooperative NADH, and L-malate binding in ternary complexes with Supernatant pig heart enzyme.
    Mueggler PA; Dahlquist FW; Wolfe RG
    Biochemistry; 1975 Jul; 14(15):3490-7. PubMed ID: 167827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids.
    Michuda CM; Martinez-Carrion M
    J Biol Chem; 1970 Jan; 245(2):262-9. PubMed ID: 4312670
    [No Abstract]   [Full Text] [Related]  

  • 32. Ox liver glutamate dehydrogenase. The role of lysine-126 reappraised in the light of studies of inhibition and inactivation by pyridoxal 5'-phosphate.
    Chen SS; Engel PC
    Biochem J; 1975 Sep; 149(3):619-26. PubMed ID: 173293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of tyrosine in the substrate binding site of mitochondrial L-malate dehydrogenase from bovine heart muscle.
    Siegel L; Ellison JS
    Biochemistry; 1971 Jul; 10(15):2856-62. PubMed ID: 4329809
    [No Abstract]   [Full Text] [Related]  

  • 34. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate.
    Cole SC; Yon RJ
    Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the relation of the pH-dependent dissociation of malate dehydrogenase to modification of the enzyme by N-ethylmaleimide.
    Hodges CT; Wiggins JC; Harrison JH
    J Biol Chem; 1977 Sep; 252(17):6038-41. PubMed ID: 19462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Chemical modification of the lysine residues of bacterial formate dehydrogenase].
    Popov VO; Tishkov VI; Daĭnichenko VV; Egorov AM
    Biokhimiia; 1983 May; 48(5):747-55. PubMed ID: 6409166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modification of an essential amino group of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal phosphate and by pyridoxal phosphate-sensitized photooxidation.
    Podesta FE; Iglesias AA; Andreo CS
    Arch Biochem Biophys; 1986 May; 246(2):546-53. PubMed ID: 3085590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective chemical modification of arginine residues in mitochondrial malate dehydrogenase.
    Foster M; Harrison JH
    Biochem Biophys Res Commun; 1974 May; 58(1):263-7. PubMed ID: 4364620
    [No Abstract]   [Full Text] [Related]  

  • 39. Cooperativity in the mechanism of malate dehydrogenase.
    Zimmerle CT; Alter GM
    Biochemistry; 1993 Nov; 32(47):12743-8. PubMed ID: 8251495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The N-ethylmaleimide-sensitive cysteine residue in the pH-dependent subunit interactions of malate dehydrogenase.
    Wood DC; Hodges CT; Howell SM; Clary LG; Harrison JH
    J Biol Chem; 1981 Oct; 256(19):9895-900. PubMed ID: 7275987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.